Advertisement

Electronic Materials Letters

, Volume 14, Issue 2, pp 181–186 | Cite as

Controlled Self-Assembly of Low-Dimensional Alq3 Nanostructures from 1D Nanowires to 2D Plates via Intermolecular Interactions

  • Jianmin Gu
  • Baipeng Yin
  • Shaoyan Fu
  • Cuihong Jin
  • Xin Liu
  • Zhenpan Bian
  • Jianjun Li
  • Lu Wang
  • Xiaoyu Li
Article

Abstract

Due to the intense influence of the shape and size of the photon building blocks on the limitation and guidance of optical waves, an important strategy is the fabrication of different structures. Herein, organic semiconductor tris-(8-hydroxyquinoline)aluminium (Alq3) nanostructures with controllable morphology, ranging from one-dimensional nanowires to two-dimensional plates, have been prepared through altering intermolecular interactions with employing the anti-solvent diffusion cooperate with solvent-volatilization induced self-assembly method. The morphologies of the formed nanostructures, which are closely related to the stacking modes of the molecules, can be exactly controlled by altering the polarity of anti-solvents that can influence various intermolecular interactions. The synthesis strategy reported here can potentially be extended to other functional organic nanomaterials.

Graphical Abstract

Keywords

Molecular self-assembly Organic 1D nanowires 2D plates Intermolecular interactions Nanocrystalline materials 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 21403189), Natural Science Foundation of Hebei Province (B2017203198), China Postdoctoral Science Foundation (No. 2014M551047) and Yanshan University Doctoral Foundation (No. B790).

Supplementary material

13391_2018_13_MOESM1_ESM.doc (5.8 mb)
Supplementary material 1 (DOC 5907 kb)

References

  1. 1.
    Yan, Y., Zhao, Y.S.: Organic nanophotonics: from controllable assembly of functional molecules to low-dimensional materials with desired photonic properties. Chem. Soc. Rev. 43, 4325–4340 (2014)CrossRefGoogle Scholar
  2. 2.
    Kirchain, R., Kimerling, L.: A roadmap for nanophotonics. Nat. Photon 1, 303–305 (2007)CrossRefGoogle Scholar
  3. 3.
    Yao, W., Zhao, Y.S.: Tailoring the self-assembled structures and photonic properties of organic nanomaterials. Nanoscale 6, 3467–3473 (2014)CrossRefGoogle Scholar
  4. 4.
    Xie, W., Fan, J., Song, H., Jiang, F., Yuan, H., Wei, Z., Ji, Z., Pang, Z., Han, S.: Controllable synthesis of rice-shape Alq(3) nanoparticles with single crystal structure. Physica E 84, 519–523 (2016)CrossRefGoogle Scholar
  5. 5.
    Zhao, Y.S., Fu, H., Hu, F., Peng, A., Yang, W., Yao, J.: Tunable emission from binary organic one-dimensional nanomaterials: an alternative approach to white-light emission. Adv. Mater. 20, 79–83 (2008)CrossRefGoogle Scholar
  6. 6.
    Zhang, C., Zou, C.-L., Yan, Y., Hao, R., Sun, F.-W., Han, Z.-F., Zhao, Y.S., Yao, J.: Two-photon pumped lasing in single-crystal organic nanowire exciton polariton resonators. J. Am. Chem. Soc. 133, 7276–7279 (2011)CrossRefGoogle Scholar
  7. 7.
    Yao, W., Yan, Y., Xue, L., Zhang, C., Li, G., Zheng, Q., Zhao, Y.S., Jiang, H., Yao, J.: Controlling the structures and photonic properties of organic nanomaterials by molecular design. Angew. Chem. Int. Ed. 52, 8713–8717 (2013)CrossRefGoogle Scholar
  8. 8.
    Zhao, Y.S., Fu, H., Peng, A., Ma, Y., Xiao, D., Yao, J.: Low-dimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties. Adv. Mater. 20, 2859–2876 (2008)CrossRefGoogle Scholar
  9. 9.
    Lei, Y.L., Liao, L.S., Lee, S.T.: Selective growth of dual-color-emitting heterogeneous microdumbbells composed of organic charge-transfer complexes. J. Am. Chem. Soc. 135, 3744–3747 (2013)CrossRefGoogle Scholar
  10. 10.
    Zhu, W., Zhu, L., Zou, Y., Wu, Y., Zhen, Y., Dong, H., Fu, H., Wei, Z., Shi, Q., Hu, W.: Deepening insights of charge transfer and photophysics in a novel donor-acceptor cocrystal for waveguide couplers and photonic logic computation. Adv. Mater. 28, 5954–5962 (2016)CrossRefGoogle Scholar
  11. 11.
    Sun, Y.-Q., Lei, Y.-L., Gao, J., Sun, X.-H., Lin, S.-H., Bao, Q.-L., Liao, Q., Lee, S.-T., Liao, L.-S.: Two-dimensional optical waveguiding and luminescence vapochromic properties of 8-hydroxyquinoline zinc (Znq(2)) hexagonal microsheets. Chem. Commun. 50, 10812–10814 (2014)CrossRefGoogle Scholar
  12. 12.
    Diao, Y., Shaw, L., Bao, Z., Mannsfeld, S.C.B.: Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ. Sci. 7, 2145–2159 (2014)CrossRefGoogle Scholar
  13. 13.
    Lee, W.H., Cho, J.H., Cho, K.: Control of mesoscale and nanoscale ordering of organic semiconductors at the gate dielectric/semiconductor interface for organic transistors. J. Mater. Chem. 20, 2549–2561 (2010)CrossRefGoogle Scholar
  14. 14.
    Zhang, C., Chen, P., Hu, W.: Organic light-emitting transistors: materials, device configurations, and operations. Small 12, 1252–1294 (2016)CrossRefGoogle Scholar
  15. 15.
    Fan, C., Zoombelt, A.P., Jiang, H., Fu, W., Wu, J., Yuan, W., Wang, Y., Li, H., Chen, H., Bao, Z.: Solution-grown organic single-crystalline p–n junctions with ambipolar charge transport adv. Mater. 25, 5762–5766 (2013)Google Scholar
  16. 16.
    Gu, J., Wu, J., Gao, Y., Wu, T., Li, Q., Li, A., Zheng, J.Y., Wen, B., Gao, F.: Electrogenerated chemiluminescence logic gate operations based on molecule-responsive organic microwires. Nanoscale 9, 10397–10403 (2017)CrossRefGoogle Scholar
  17. 17.
    Yao, W., Han, G., Huang, F., Chu, M., Peng, Q., Hu, F., Yi, Y., Jiang, H., Yao, J., Zhao, Y.S.: “H”-like organic nanowire heterojunctions constructed from cooperative molecular assembly for photonic applications. Adv. Sci. 2, 1500130 (2015)CrossRefGoogle Scholar
  18. 18.
    Garcia-Frutos, E.M.: Small organic single-crystalline one-dimensional micro- and nanostructures for miniaturized devices. J. Mater. Chem. C 1, 3633–3645 (2013)CrossRefGoogle Scholar
  19. 19.
    Zhang, C., Yan, Y., Jing, Y.-Y., Shi, Q., Zhao, Y.S., Yao, J.: One-dimensional organic photonic heterostructures: rational construction and spatial engineering of excitonic emission. Adv. Mater. 24, 1703–1708 (2012)CrossRefGoogle Scholar
  20. 20.
    Chandrasekhar, N., Chandrasekar, R.: Reversibly shape-shifting organic optical waveguides: formation of organic nanorings, nanotubes, and nanosheets. Angew. Chem. Int. Ed. 51, 3556–3561 (2012)CrossRefGoogle Scholar
  21. 21.
    Chen, W., Peng, Q., Li, Y.: Alq(3) nanorods: promising building blocks for optical devices. Adv. Mater. 20, 2747–2750 (2008)CrossRefGoogle Scholar
  22. 22.
    Gu, J., Yan, Y., Zhang, C., Yao, J., Zhao, Y.S.: Inclusion induced second harmonic generation in low dimensional supramolecular crystals. J. Mater. Chem. C 2, 3199–3203 (2014)CrossRefGoogle Scholar
  23. 23.
    Kim, J., Park, C., Park, J.E., Chu, K., Choi, H.C.: Vertical crystallization of C-60 nanowires by solvent vapor annealing process. ACS Nano 7, 9122–9128 (2013)CrossRefGoogle Scholar
  24. 24.
    Xu, G., Tang, Y.-B., Tsang, C.-H., Zapien, J.-A., Lee, C.-S., Wong, N.-B.: Facile solution synthesis without surfactant assistant for ultra long Alq3 sub-microwires and their enhanced field emission and waveguide properties. J. Mater. Chem. 20, 3006–3010 (2010)CrossRefGoogle Scholar
  25. 25.
    Xie, W., Song, H., Fan, J., Jiang, F., Yuan, H., Zhang, S., Wei, Z., Pang, Z., Han, S.: Structures and photoluminescence properties of Alq(3) 1D materials prepared by an extremely facile solution method. RSC Adv. 5, 95405–95409 (2015)CrossRefGoogle Scholar
  26. 26.
    Gu, J., Gao, Y., Wu, J., Li, Q., Li, A., Zhang, W., Dong, H., Wen, B., Gao, F., Zhao, Y.S.: Polymorph-dependent electrogenerated chemiluminescence of low-dimensional organic semiconductor structures for sensing. ACS Appl. Mater. Interfaces 9, 8891–8899 (2017)CrossRefGoogle Scholar
  27. 27.
    Zheng, J.Y., Yan, Y., Wang, X., Zhao, Y.S., Huang, J., Yao, J.: Wire-on-wire growth of fluorescent organic heterojunctions. J. Am. Chem. Soc. 134, 2880–2883 (2012)CrossRefGoogle Scholar
  28. 28.
    Zang, L., Che, Y., Moore, J.S.: One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices. Acc. Chem. Res. 41, 1596–1608 (2008)CrossRefGoogle Scholar
  29. 29.
    Garcia-Frutos, E.M., Hennrich, G., Gutierrez, E., Monge, A., Gomez-Lor, B.: Self-assembly of C-3-symmetrical hexaaryltriindoles driven by solvophobic and CH–pi interactions. J. Org. Chem. 75, 1070–1076 (2010)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Jianmin Gu
    • 1
  • Baipeng Yin
    • 1
  • Shaoyan Fu
    • 1
  • Cuihong Jin
    • 1
  • Xin Liu
    • 1
  • Zhenpan Bian
    • 1
  • Jianjun Li
    • 1
  • Lu Wang
    • 1
  • Xiaoyu Li
    • 1
  1. 1.Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoChina

Personalised recommendations