Skip to main content
Log in

Tuning of Graphene Work Function by Alkyl Chain Length in Amine-Based Compounds

  • Original Article - Chemistry and Biomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this study, the effect of alkyl chain length in amine-based compounds on the work function of graphene was investigated. The graphene was synthesized by the chemical vapor deposition method. The graphene layers were functionalized by amine-based groups using a simple spin-coating method. The amine-based compounds were composed of phenyl amine and methyl-, ethyl-, propyl-, n/t-butyl-, and octyl-phenyl amine groups. Materials were confirmed by X-ray photoelectron spectroscopy to show the C and N bonding. The work function of the doped graphene layers decreased because of the effect of the doping agents. Among the doped graphene samples, t-butyl-phenyl amine functionalized graphene achieved the lowest work function of 3.89 eV (compared with 4.43 eV for pristine graphene). Further, the sheet resistance of n-doped graphene increased, confirming the high concentration of n-doping agents on the graphene layers. These results suggest the best alkyl chain is the t-butyl group to reduce the work function of graphene, and promise the use of these materials as cathodes for opto-electronic applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  Google Scholar 

  2. Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008)

    Article  Google Scholar 

  3. Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S., Stormer, H.L., Zeitler, U., Maan, J., Boebinger, G., Kim, P., Geim, A.K.: Room-temperature quantum hall effect in graphene. Science 315, 1379 (2007)

    Article  Google Scholar 

  4. Obraztsov, A., Obraztsova, E.A., Tyurnina, A.V., Zolotukhin, A.: Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45, 2017–2021 (2007)

    Article  Google Scholar 

  5. Im, H., Kim, J.H.: Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon 50, 5429–5440 (2012)

    Article  Google Scholar 

  6. Kwon, K.C., Son, H.J., Hwang, Y.H., Oh, J.H., Lee, T.-W., Jang, H.W., Kwak, K., Park, K., Kim, S.Y.: Effect of amine-based organic compounds on the work-function decrease of graphene. J. Phys. Chem. C 120, 1309–1316 (2016)

    Article  Google Scholar 

  7. Bae, S., Kim, H.K., Lee, Y.B., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.-J., Kim, K.S., Ozilmaz, B., Ahn, J.H., Hong, B.H., Iijima, S.: Roll-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010)

    Article  Google Scholar 

  8. Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  Google Scholar 

  9. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banergee, S.K., Colombo, L., Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  Google Scholar 

  10. Kwon, K.C., Choi, K.S., Kim, B.J., Lee, J.-L., Kim, S.Y.: Work-function decrease of graphene sheet using alkali metal carbonates. J. Phys. Chem. C 116, 26586–26591 (2012)

    Article  Google Scholar 

  11. Kwon, K.C., Choi, K.S., Kim, C., Kim, S.Y.: Effect of transition-metal chlorides on graphene properties. Phys. Status Solidi a 211, 1794–1800 (2014)

    Article  Google Scholar 

  12. Kwon, K.C., Choi, K.S., Kim, S.Y.: Increased work function in few-layer graphene sheets via metal chloride doping. Adv. Funct. Mater. 22, 4724–4731 (2012)

    Article  Google Scholar 

  13. Kwon, K., Kim, B.J., Lee, J.-L., Kim, S.Y.: Role of ionic chlorine in the thermal degradation of metal chloride-doping graphene sheets. J. Mater. Chem. C 1, 253–259 (2013)

    Article  Google Scholar 

  14. Christodoulou, C., Giannakopoulos, A., Nardi, M.V., Ligorio, G., Oehzelt, M., Chen, L., Pasquali, L., Timpel, M., Giglia, A., Nannarone, S., Norman, P., Parvez, K., Mullen, K., Deljonne, D., Koch, N.: Tuning the work function of graphene-on-quartz with a high weight molecualr acceptor. J. Phys. Chem. C 118, 4784–4790 (2014)

    Article  Google Scholar 

  15. Gholizadeh, R., Yu, Y.-X.: Work function of pristine and heteroatom-doped graphenes under different external electric fields:an ab initio DFT study. J. Phys. Chem. C 118, 28274–28282 (2014)

    Article  Google Scholar 

  16. Yu, Y.-X.: A dispersion-corrected DFT study on adsorption of battery active materials anthraquinone and its derivatives on monolayer graphene and h-BN. J. Mater. Chem. A 2, 8910–8917 (2014)

    Article  Google Scholar 

  17. Yu, Y.-X.: Binding energy and work function of organic electrode materials phenanthraquinone, pyromellitic dianhydride and their derivatives adsorbed on graphene. Appl. Mater. Interfaces 6, 16267–16275 (2014)

    Article  Google Scholar 

  18. Basko, D.M., Piscanec, S., Ferrari, A.C.: Electron–electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B 80, 165413 (2009)

    Article  Google Scholar 

  19. Dong, X., Fu, D., Fang, W., Shi, Y., Chen, P., Li, L.-J.: Doping single-layer graphene with aromatic molecules. Small 5(12), 1422 (2009)

    Article  Google Scholar 

  20. Chen, Z., Santoso, I., Wang, R., Xie, L.F., Mao, H.Y., Huang, H., Wang, Y.Z., Gao, X.Y., Chen, Z.K., Ma, D., Wee, A.T.S., Chen, W.: Surface transfer hole doping of epitaxial graphene using MoO3 thin film. Appl. Phys. Lett. 96, 213104 (2010)

    Article  Google Scholar 

  21. Han, C., Lin, J., Xiang, D., Wang, C., Wang, L., Chen, W.: Improving chemical vapor deposition graphene conductivity using molybdenum trioxide: an in-situ field effect transistor study. Appl. Phys. Lett. 103, 263117 (2013)

    Article  Google Scholar 

  22. Panchakarla, L., Subrahmanyam, K., Saha, S., Govindaraj, A., Krishnamurthy, H., Waghmare, U., Rao, C.N.: Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009)

    Google Scholar 

  23. Hwang, J.O., Park, J.S., Choi, D.S., Kim, J.Y., Lee, S.H., Lee, K.E., Kim, Y.-H., Song, M.H., Yoo, S., Kim, S.O.: Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes. ACS Nano 6, 159–167 (2011)

    Article  Google Scholar 

  24. Deng, Y., Li, Y., Dai, J., Lang, M., Huang, X.: An efficient way to functionalize graphene sheets with presynthesized polymer via ATNRC chemistry. J. Polym. Chem. 49, 1582–1590 (2011)

    Article  Google Scholar 

  25. Ren, L., Huang, S., Zhang, C., Wang, R., Tjiu, W.W., Liu, T.: Functionalization of graphene and grafting of temperature-responsive surfaces from graphene by ATRP “on water”. J. Nanopart. Res. 14, 940 (2012)

    Article  Google Scholar 

  26. Shanmugharaj, A., Yoon, J., Yang, W., Ryu, S.H.: Synthesis, characterization, and surface wettability properties of amine functionalized graphene oxide films with varying amine chain lengths. J. Colloid Interface Sci. 401, 148 (2013)

    Article  Google Scholar 

  27. Kim, C., Yoon, M.-J., Hong, S.H., Park, M., Park, K., Kim, S.Y.: Aromatic substituents for prohibiting side-chain packing and π–π stacking in tin-cored tetrahedral stilbenoids. Electron. Mater. Lett. 12, 388–398 (2016)

    Article  Google Scholar 

  28. Song, S.M., Park, J.K., Sul, O.J., Cho, B.J.: Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Lett. 12, 3887–3892 (2012)

    Article  Google Scholar 

  29. Shi, Y., Kim, K.K., Reina, A., Hofmann, M., Li, L.-J., Kong, J.: Work function engineering of graphene electrode via chemical doping. ACS Nano 4, 2689–2694 (2010)

    Article  Google Scholar 

  30. Jo, I., Kim, Y., Moon, J., Park, S., Moon, J.S., Park, W.B., Lee, J.S., Hong, H.: Stable n-type doping of graphene via high-molecular-weight ethylene amines. Phys. Chem. Chem. Phys. 17, 29492–29495 (2015)

    Article  Google Scholar 

  31. Ishikawa, R., Bando, M., Morimoto, Y., Sandhu, A.: Doping graphene films via chemically mediated charge transfer. Nano Res Lett 6, 111 (2011)

    Article  Google Scholar 

  32. Lee, W.H., Suk, J.W., Lee, J., Hao, Y., Park, J., Yang, J.W., Ha, H.-W., Murali, S., Chou, H., Akinwande, H., Kim, K.S., Ruoff, R.S.: Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic. ACS Nano 6, 1284–1290 (2012)

    Article  Google Scholar 

  33. Podila, R., Rao, R., Tsuchikawa, R., Ishigami, M., Rao, A.M.: Raman spectroscopy of folded and scrolled graphene. ACS Nano 6, 5784–5790 (2012)

    Article  Google Scholar 

  34. Sun, T., Wang, Z., Shi, Z., Ran, G., Xu, W., Wang, Z., Li, Y., Dai, L., Qin, G.: Multilayered graphene used as anode of organic light emitting devices. Appl. Phys. Lett. 96, 55 (2010)

    Google Scholar 

  35. Ferrari, A.C.: Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  Google Scholar 

  36. Kwon, K.C., Son, P.K., Kim, S.Y.: Ion beam irradiation of few-layer graphene and its application to liquid crystal cells. Carbon 67, 352–359 (2014)

    Article  Google Scholar 

  37. Oh, J.H., Choi, G.J., Kwon, K.C., Bae, S.-R., Jang, H.W., Gwag, J.S., Kim, S.Y.: Ion-beam-irradiated CYTOP-transferred graphene for liquid crystal cells. Electron. Mater. Lett. 13, 277–285 (2017)

    Article  Google Scholar 

  38. Zafar, Z., Ni, Z.H., Wu, X., Shi, Z.X., Nan, H.Y., Bai, J., Sun, L.T.: Evolution of raman spectra in nitrogen doped graphene. Carbon 61, 57–62 (2013)

    Article  Google Scholar 

  39. Ramanathan, T., Fisher, F., Ruoff, R., Brinson, L.C.: Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem. Mater. 17, 1290–1295 (2005)

    Article  Google Scholar 

  40. Jansen, R., Bekkum, H.V.: XPS of nitrogen-containing functional groups on activated carbon. Carbon 33, 1021–1027 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (Nos. 2018R1A4A1022647); and this research was supported by the Chung-Ang University Research Scholarship Grants in 2015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwangyong Park or Soo Young Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, SR., Lee, T.W., Park, K. et al. Tuning of Graphene Work Function by Alkyl Chain Length in Amine-Based Compounds. Electron. Mater. Lett. 15, 141–148 (2019). https://doi.org/10.1007/s13391-018-00109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-00109-4

Keywords

Navigation