Skip to main content
Log in

Effect of Thickness Ratio in Piezoelectric/Elastic Cantilever Structure on the Piezoelectric Energy Harvesting Performance

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The energy harvesting by utilizing the piezoelectric effect for the conversion of oscillatory mechanical energy to useful electrical energy has been promising for self-powered devices. The output power can be controlled by designing the size and shape of the constituents of the harvester. This study demonstrates the effect of Ti plate (elastic layer) thickness on the resonant frequency, neutral axis position, vibration amplitude and energy harvesting performance of the cantilever structured piezoelectric energy harvester (PEH). Here, the each harvester had the same dimensions of piezoelectric layer and the same proof mass position at the end of the cantilever while it had the different elastic layer thicknesses (70–300 μm). The analysis revealed that the output power showed the opposite trend in vibration amplitude with varying the elastic layer thickness. Among all of the PEHs, the configuration with the largest elastic layer thickness (300 μm) exhibited a maximum output power of 48 μW at 76 Hz under 0.2 g acceleration, despite of the smallest vibration amplitude and the highest resonant frequency. The outcomes suggest that the thickness ratio of the piezoelectric and elastic layers should be optimized to realize the best harvesting performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ozger, M., Cetinkaya, O., Akan, O.B.: Energy harvesting cognitive radio networking for IoT-enabled smart grid. Mobile Netw. Appl. 23, 956 (2018)

    Article  Google Scholar 

  2. Sudevalayam, S., Kulkarni, P.: Energy harvesting sensor nodes: survey and implications. IEEE Commun. Surv. Tutor. 13, 443 (2011)

    Article  Google Scholar 

  3. Akinaga, H., Fujita, H., Mizuguchi, M., Mori, T.: Focus on advanced materials for energy harvesting: prospects and approaches of energy harvesting technologies. Sci. Technol. Adv. Mater. 19, 543 (2018)

    Article  Google Scholar 

  4. Dondi, D., Bertacchini, A., Larcher, L., Pavan, P., Brunelli, D., Benini, L.: A solar energy harvesting circuit for low power applications. In: Proceedings of IEEE International Conference on Sustainable Energy Technologies (ICSEGT), p. 945 (2008)

  5. Iannacci, J., Sordo, G., Serra, E., Schmid, U.: The MEMS four-leaf clover wideband vibration energy harvesting device: design concept and experimental verification. Microsyst. Technol. 22, 1865 (2016)

    Article  Google Scholar 

  6. Wei, C., Jing, X.: A comprehensive review on vibration energy harvesting: modelling and realization. Renew. Sust. Energy Rev. 74, 1 (2017)

    Article  Google Scholar 

  7. Siang, J., Lim, M.H., Salman Leong, M.: Review of vibration-based energy harvesting technology: mechanism and architectural approach. Int. J. Energy Res. 42, 1866 (2018)

    Article  Google Scholar 

  8. Hosseini, R., Hamedi, M., Im, J., Kim, J., Dayou, J.: Analytical and experimental investigation of partially covered piezoelectric cantilever energy harvester. Int. J. Precis. Eng. Manuf. 18, 415 (2017)

    Article  Google Scholar 

  9. Lee, K.H., Kim, S.W.: Design and preparation of high-performance bulk thermoelectric materials with defect structures. J. Korean Ceram. Soc. 54, 75 (2017)

    Article  Google Scholar 

  10. Go, S.H., Kim, D.S., Han, S.H., Kang, H.-W., Lee, H.-G., Cheon, C.I.: Figures of merit of (K, Na, Li)(Nb, Ta)O3 ceramics with various Li contents for a piezoelectric energy harvester. J. Korean Ceram. Soc. 54, 530 (2017)

    Article  Google Scholar 

  11. Priya, S., Song, H.-C., Zhou, Y., Varghese, R., Chopra, A., Kim, S.-G., Kanno, I., Wu, L., Ha, D.S., Ryu, J., Polcawich, R.G.: A review on piezoelectric energy harvesting: materials, methods, and circuits. Energy Harvest Syst. 4, 3 (2017)

    Google Scholar 

  12. Kim, S.K., Kim, J.-H., Kim, J.: A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12, 1129 (2011)

    Article  Google Scholar 

  13. Jin, L., Gao, S., Zhou, X., Zhang, G.: The effect of different shapes of cantilever beam in piezoelectric energy harvesters on their electrical output. Microsyst. Technol. 23, 4805–4814 (2017)

    Article  Google Scholar 

  14. Kambale, R.C., Yoon, W.-H., Park, D.-S., Choi, J.-J., Ahn, C.-W., Kim, J.-W., Hahn, B.-D., Jeong, D.-Y., Chul Lee, B., Chung, G.-S., Ryu, J.: Magnetoelectric properties and magnetomechanical energy harvesting from stray vibration and electromagnetic wave by Pb(Mg1/3Nb2/3)O3–Pb(Zr, Ti)O3 single crystal/Ni cantilever. J. Appl. Phys. 113, 204108 (2013)

    Article  Google Scholar 

  15. Rajaram Patil, D., Chai, Y., Kambale, R.C., Jeon, B.-G., Yoo, K., Ryu, J., Yoon, W.-H., Park, D.-S., Jeong, D.-Y., Lee, S.-G., Lee, J., Nam, J.-H., Cho, J.-H., Kim, B.-I., Hoon Kim, K.: Enhancement of resonant and non-resonant magnetoelectric coupling in multiferroic laminates with anisotropic piezoelectric properties. Appl. Phys. Lett. 102, 062909 (2013)

    Article  Google Scholar 

  16. Cho, J.Y., Kim, K.-B., Jabbar, H., Sin Woo, J., Ahn, J.H., Hwang, W.S., Jeong, S.Y., Cheong, H., Yoo, H.H., Sung, T.H.: Design of optimized cantilever form of a piezoelectric energy harvesting system for a wireless remote switch. Sens. Actuators A Phys. 280, 340 (2018)

    Article  Google Scholar 

  17. Ryu, J., Kang, J.-E., Zhou, Y., Choi, S.-Y., Yoon, W.-H., Park, D.-S., Choi, J.-J., Hahn, B.-D., Ahn, C.-W., Kim, J.-W., Kim, Y.-D., Priya, S., Lee, S.Y., Jeong, S., Jeong, D.-Y.: Ubiquitous magneto-mechano-electric generator. Energy Environ. Sci. 8, 2402 (2015)

    Article  Google Scholar 

  18. Chu, Z., Annapureddy, V., PourhosseiniAsl, M., Palneedi, H., Ryu, J., Dong, S.: Dual-stimulus magnetoelectric energy harvesting. MRS Bull. 43, 199 (2018)

    Article  Google Scholar 

  19. Cho, K.-H., Park, H.-Y., Heo, J.S., Priya, S.: Structure–performance relationships for cantilever-type piezoelectric energy harvesters. J. Appl. Phys. 115, 204108 (2014)

    Article  Google Scholar 

  20. Dayou, J., Kim, J., Im, J., Zhai, L., How, A.T.C., Liew, W.Y.H.: The effects of width reduction on the damping of a cantilever beam and its application in increasing the harvesting power of piezoelectric energy harvester. Smart Mater. Struct. 24, 45006 (2015)

    Article  Google Scholar 

  21. Palosaari, J., Leinonen, M., Juuti, J., Jantunen, H.: The effects of substrate layer thickness on piezoelectric vibration energy harvesting with a bimorph type cantilever. Mech. Syst. Signal Process. 106, 114 (2018)

    Article  Google Scholar 

  22. Qing-Ming, W., Xiao-Hong, D., Baomin, X., Cross, L.E.: Electromechanical coupling and output efficiency of piezoelectric bending actuators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 638 (1999)

    Article  Google Scholar 

  23. Patil, D.R., Zhou, Y., Kang, J.-E., Sharpes, N., Jeong, D.-Y., Kim, Y.-D., Kim, K.H., Priya, S., Ryu, J.: Anisotropic self-biased dual-phase low frequency magneto-mechano-electric energy harvesters with giant power densities. APL Mater. 2, 046102 (2014)

    Article  Google Scholar 

  24. Geon-Tae, H., Joonseok, Y., Ho, Y.S., Ho-Yong, L., Minbok, L., Yong, P.D., Hyun, H.J., Jun, L.S., Kyu, J.C., Jaeha, K., Kwi-Il, P., Jae, L.K.: A reconfigurable rectified flexible energy harvester via solid-state single crystal grown PMN–PZT. Adv. Mater. 5, 1500051 (2015)

    Google Scholar 

  25. Hong, Y., Sui, L., Zhang, M., Shi, G.: Theoretical analysis and experimental study of the effect of the neutral plane of a composite piezoelectric cantilever. Energy Convers. Manag. 171, 1020 (2018)

    Article  Google Scholar 

  26. Morimoto, K., Kanno, I., Wasa, K., Kotera, H.: High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers. Sens. Actuators A Phys. 163, 428 (2010)

    Article  Google Scholar 

  27. Durou, H., Ardila-Rodriguez, G.A., Ramond, A., Dollat, X., Rossi, C., Esteve, D.: Micromachined bulk pzt piezoelectric vibration harvester to improve effectiveness over low amplitude and low frequency vibrations. In: Proceedings of Power MEMS, p. 27 (2010)

  28. Kanno, I., Ichida, T., Adachi, K., Kotera, H., Shibata, K., Mishima, T.: Power generation performance of lead-free (K, Na)NbO3 piezoelectric thin-film energy harvesters. Sens. Actuators A Phys. 179, 132 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Civil & Military Technology Cooperation Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2014M3C1A9060874) and with the Creative Research Project of the National Science and Technology Council (CAP-17-04-KRISS). Works at YU was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1A2B4011663). Works at PNU was supported from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2017M3A7B4049466 and NRF-2018R1C1B5045721).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung Woo Lee or Jungho Ryu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, GY., Peddigari, M., Lim, KW. et al. Effect of Thickness Ratio in Piezoelectric/Elastic Cantilever Structure on the Piezoelectric Energy Harvesting Performance. Electron. Mater. Lett. 15, 61–69 (2019). https://doi.org/10.1007/s13391-018-00103-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-00103-w

Keywords

Navigation