Advertisement

Electronic Materials Letters

, Volume 14, Issue 1, pp 14–22 | Cite as

Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx

  • Seokjae Won
  • Sang Yeon Lee
  • Jungyeon Hwang
  • Jucheol Park
  • Hyungtak Seo
Article
  • 189 Downloads

Abstract

Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching ~200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto ~120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications.

Keywords

VO2 MIT Mott resistive switching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Zhou and S. Ramanathan, Proceedings of the IEEE 103, 1289 (2015).CrossRefGoogle Scholar
  2. 2.
    N. F. Mott, P. Phys. Soc. Section A 62, 416 (1949).CrossRefGoogle Scholar
  3. 3.
    J. B. Goodenough, J. Solid State Chem. 3, 490 (1971).CrossRefGoogle Scholar
  4. 4.
    A. Zylbersztejn and N. F. Mott, Physical Review B 11, 4383 (1975).CrossRefGoogle Scholar
  5. 5.
    M. Haverkort, Z. Hu, A. Tanaka, W. Reichelt, S. Streltsov, M. Korotin, V. Anisimov, H. Hsieh, H.-J. Lin, and C. Chen, Phys. Rev. Lett. 95, 196404 (2005).CrossRefGoogle Scholar
  6. 6.
    S. Biermann, A. Poteryaev, A. Lichtenstein, and A. Georges, Phys. Rev. Lett. 94, 026404 (2005).CrossRefGoogle Scholar
  7. 7.
    A. Liebsch, H. Ishida, and G. Bihlmayer, Phys. Rev. B 71, 085109 (2005).CrossRefGoogle Scholar
  8. 8.
    J. D. Budai, J. Hong, M. E. Manley, E. D. Specht, C. W. Li, J. Z. Tischler, D. L. Abernathy, A. H. Said, B. M. Leu, and L. A. Boatner, Nature 515, 535 (2014).CrossRefGoogle Scholar
  9. 9.
    B. Qu, A. Younis, and D. Chu, Electron. Mater. Lett. 12, 715 (2016).CrossRefGoogle Scholar
  10. 10.
    L. Wang, C.-H. Yang, and J. Wen, Electron. Mater. Lett. 11, 505 (2015).CrossRefGoogle Scholar
  11. 11.
    Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011).CrossRefGoogle Scholar
  12. 12.
    Z. Yang, C. Ko, V. Balakrishnan, G. Gopalakrishnan, and S. Ramanathan, Phys. Rev. B 82, 205101 (2010).CrossRefGoogle Scholar
  13. 13.
    S. Kumar, M. D. Pickett, J. P. Strachan, G. Gibson, Y. Nishi, and R. S. Williams, Adv. Mater. 25, 6128 (2013).CrossRefGoogle Scholar
  14. 14.
    X. Zhong, X. Zhang, A. Gupta, and P. LeClair, J. Appl. Phys. 110, 084516 (2011).CrossRefGoogle Scholar
  15. 15.
    G. Stefanovich, A. Pergament, and D. Stefanovich, J. Phys. Condens. Mat. 12, 8837 (2000).CrossRefGoogle Scholar
  16. 16.
    R. Hao, Y. Li, F. Liu, Y. Sun, J. Tang, P. Chen, W. Jiang, Z. Wu, T. Xu, and B. Fang, Infrared Phys. Techn. 75, 82 (2016).CrossRefGoogle Scholar
  17. 17.
    J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, Science 339, 1402 (2013).CrossRefGoogle Scholar
  18. 18.
    F. Nakamura, M. Sakaki, Y. Yamanaka, S. Tamaru, T. Suzuki, and Y. Maeno, Scientific Reports 3, 2536 (2013).CrossRefGoogle Scholar
  19. 19.
    B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, Phys. Rev. B 84, 241410 (2011).CrossRefGoogle Scholar
  20. 20.
    Y. Luo, L. Zhu, Y. Zhang, S. Pan, S. Xu, M. Liu, and G. Li, J. Appl. Phys. 113, 183520 (2013).CrossRefGoogle Scholar
  21. 21.
    Y. Shigesato, M. Enomoto, and H. Odaka, Jpn. J. Appl. Phys. 39, 6016 (2000).CrossRefGoogle Scholar
  22. 22.
    H. Katzke, P. Tolédano, and W. Depmeier, Phys. Rev. B 68, 024109 (2003).CrossRefGoogle Scholar
  23. 23.
    A. Beaumont, J. Leroy, J.-C. Orlianges, and A. Crunteanu, J. Appl. Phys. 115, 154502 (2014).CrossRefGoogle Scholar
  24. 24.
    K. Prokhorov, A. Velichko, and A. Pergament, “Sensor Element for a Thermal Imaging Matrix Based on Vanadium Oxide Film”, presented at The 25th Nordic Semiconductor Meeting, Espoo, Finland (2013).Google Scholar
  25. 25.
    M. Son, X. Liu, S. M. Sadaf, D. Lee, S. Park, W. Lee, S. Kim, J. Park, J. Shin, and S. Jung, IEEE Electr. Dev. L. 33, 718 (2012).CrossRefGoogle Scholar
  26. 26.
    S. D. Ha, Y. Zhou, C. J. Fisher, S. Ramanathan, and J. P. Treadway, J. Appl. Phys. 113, 184501 (2013).CrossRefGoogle Scholar
  27. 27.
    R. Zimmermann, P. Steiner, R. Claessen, F. Reinert, S. Hüfner, P. Blaha, and P. Dufek, J. Phys. Condens. Mat. 11, 1657 (1999).CrossRefGoogle Scholar
  28. 28.
    M. Demeter, M. Neumann, and W. Reichelt, Surf. Sci. 454, 41 (2000).CrossRefGoogle Scholar
  29. 29.
    S. Shin, M. Fujisawa, H. Ishii, Y. Harada, M. Watanabe, M. Grush, T. Callcott, R. Perera, E. Kurmaev, and A. Moewes, J. Electron. Spectrosc. 92, 197 (1998).CrossRefGoogle Scholar
  30. 30.
    G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. De Gryse, J. Electron. Spectrosc. 135, 167 (2004).CrossRefGoogle Scholar
  31. 31.
    J. Mendialdua, R. Casanova, and Y. Barbaux, J. Electron. Spectrosc. 71, 249 (1995).CrossRefGoogle Scholar
  32. 32.
    E. Hryha, E. Rutqvist, and L. Nyborg, Surf. Interface Anal. 44, 1022 (2012).CrossRefGoogle Scholar
  33. 33.
    C. Hébert, M. Willinger, D. S. Su, P. Pongratz, P. Schattschneider, and R. Schlögl, Eur. Phys. J. B 28, 407 (2002).CrossRefGoogle Scholar
  34. 34.
    A. Gloter, V. Serin, C. Turquat, C. Cesari, C. Leroux, and G. Nihoul, Eur. Phys. J. B 22, 179 (2001).CrossRefGoogle Scholar
  35. 35.
    H. Zhou, M. F. Chisholm, T.-H. Yang, S. J. Pennycook, and J. Narayan, J. Appl. Phys. 110, 073515 (2011).CrossRefGoogle Scholar
  36. 36.
    H. Abe, M. Terauchi, M. Tanaka, S. Shin, and Y. Ueda, Jpn. J. Appl. Phys. 36, 165 (1997).CrossRefGoogle Scholar
  37. 37.
    C. Hébert, M. Willinger, D. S. Su, P. Pongratz, P. Schattschneider, and R. Schlögl, Eur. Phys. J. B 28, 407 (2002).CrossRefGoogle Scholar
  38. 38.
    A. Gloter, V. Serin, C. Turquat, C. Cesari, C. Leroux, and G. Nihoul, Eur. Phys. J. B 22, 179 (2001).CrossRefGoogle Scholar
  39. 39.
    Z. Yang, S. Hart, C. Ko, A. Yacoby, and S. Ramanathan, J. Appl. Phys. 110, 033725 (2011).CrossRefGoogle Scholar
  40. 40.
    M. Son, X. Liu, S. M. Sadaf, D. Lee, S. Park, W. Lee, S. Kim, J. Park, J. Shin, S. Jung, M. H. Ham, and H. Hwang, IEEE Electr. Dev. L. 33, 718 (2012).CrossRefGoogle Scholar
  41. 41.
    M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, IEEE Electr. Dev. L. 32, 1579 (2011).CrossRefGoogle Scholar
  42. 42.
    M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U. I. Chung, I.-K. Yoo, and K. Kim, Nat. Mater. 10, 625 (2011).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media B.V. 2018

Authors and Affiliations

  • Seokjae Won
    • 1
  • Sang Yeon Lee
    • 1
  • Jungyeon Hwang
    • 1
  • Jucheol Park
    • 2
  • Hyungtak Seo
    • 1
    • 3
  1. 1.Department of Energy Systems ResearchAjou UniversitySuwonKorea
  2. 2.Gyeongbuk Science Technology Promotion CenterGumi Electronics & Information Technology Research InstituteGumiKorea
  3. 3.Department of Materials Science and EngineeringAjou UniversitySuwonKorea

Personalised recommendations