Skip to main content
Log in

Properties of photocatalytically generated oxygen species produced by Ag2Se-graphene oxide heterojunction and its application for the visible-light degradation of ammonia

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) can be produced by the interactions between sunlight and light-absorbing substances in aqueous environments, and these ROS are capable of destroying various organic pollutants in wastewater. In this study, the photocatalytic degradation of ammonia in petrochemical wastewater was investigated by solar light photocatalysis. We used graphene oxide modified Ag2Se nanoparticles to enhance the activity of photochemically generated oxygen (PGO) species. There was a catastrophic decrease in the surface area and pore volume of the Ag2Se-graphene oxide (Ag2Se-G) samples because of the deposition of Ag2Se. The generation of ROS was detected by the oxidation of 1,5- diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It was revealed that the photocurrent density and PGO effect increased with the graphene oxide modified. The experimental results indicate that this heterogeneous catalyst achieved a degradation of 88.43% under visiblelight irradiation. The NH3 degradation product was N2 and neither NO2− nor NO3− were detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Halim, H. A. Aziz, M. A. Megat, K. Shah, and M. Nordin, J. Hazard. Mater. 175, 960 (2010).

    Article  Google Scholar 

  2. D. E. Meeroff, F. Bloetscher, D. V. Reddy, F. Gasnier, S. Jain, A. McBarnette, and H. Hamaguchi, J. Hazard. Mater. 209-210, 299 (2012).

    Article  Google Scholar 

  3. M. Altomare, G. L. Chiarello, A. Costa, M. Guarino, and E. Selli, Chem. Eng. J. 191, 394 (2012).

    Article  Google Scholar 

  4. H. Liu, X. N. Dong, X. C. Wang, C. C. Sun, J. Q. Li, and Z. F. Zhu, Chem. Eng. J. 230, 279 (2013).

    Article  Google Scholar 

  5. Z. D. Meng, M. M. Peng, L. Zhu, and W. C. Oh, Appl. Catal. B Environ. 113-114, 141 (2012).

    Article  Google Scholar 

  6. J. F. W. Mosselmans, R. A. D. Pattrick, G. van der Laan, J. M. Charnock, D. J. Vaughan, C. M. B. Henderson, and C. D. Garner, Phys. Chem. Minerals 22, 311 (1995).

    Article  Google Scholar 

  7. N. Nakashima, T. Ishii, M. Shirakusa, T. Nakanishi, H. Murakami, and T. Sagara, Chem. Eur. J. 7, 1766 (2001).

    Article  Google Scholar 

  8. J. J. Zhao, B. T. Jiang, S. Y. Zhang, H. L. Niu, B. K. Jin, and Y. P. Tian, Sci. China Ser. B Chem. 52, 2213 (2009).

    Article  Google Scholar 

  9. H. M. Pathan and C. D. Lokhande, Bull. Mater. Sci. 27, 85 (2004).

    Article  Google Scholar 

  10. V. Buschmann, G. V. Tendeloo, P. H. Monnoyer, and J. B. Nagy, Langmuir 14, 1528 (1998).

    Article  Google Scholar 

  11. J. Wang, Y. W. Guo, B. Liu, X. D. Jin, L. J. Liu, R. Xu, Y. M. Kong, and B. X. Wang, Ultrason. Sonochem. 18, 177 (2011).

    Article  Google Scholar 

  12. X. W. Zhang, M. H. Zhou, and L. C. Lei, Carbon 43, 1700 (2005).

    Article  Google Scholar 

  13. A. Tubtimtae, M. W. Lee, and G. J. Wang, J. Pow. Sour. 196, 6603 (2011).

    Article  Google Scholar 

  14. S. Sharma, S. Singh, A. K. Ganguli, and V. Shanmugam, Carbon 115, 781 (2017).

    Article  Google Scholar 

  15. F. G. Xu, S. Xie, R. T. Cao, Y. N. Feng, C. J. Ren, and L. Wang, Sens. Actuat._B Chem. 243, 609 (2017).

    Article  Google Scholar 

  16. Z. D. Meng, T. Ghosh, L. Zhu, J. G. Choi, C. Y. Park, and W. C. Oh, J. Mater. Chem. 22, 16127 (2012).

    Article  Google Scholar 

  17. Y. Cui, G. Chen, J. Ren, M. Shao, Y. Xie, and Y. Qian, J. Solid State Chem. 172, 17 (2003).

    Article  Google Scholar 

  18. K. A. Zeynali and F. Mollarasouli, Sens. Actuat. B Chem. 237, 387 (2016).

    Article  Google Scholar 

  19. C. Zhu, S. Guo, Y. Fang, and S. Dong, ACS Nano 4, 2429 (2010).

    Article  Google Scholar 

  20. K. N. Kudin, B. Ozbas, H. C. Schniep, R. K. Prud'homme, I. A. Aksay, and R. Car, Nano Lett. 8, 36 (2008).

    Article  Google Scholar 

  21. O. Akhavan and E. Ghaderi, Carbon 50, 1853 (2012).

    Article  Google Scholar 

  22. Y. Zhou, B. Xiao, S. Q. Liu, Z. D. Meng, Z. G. Chen, C. Y. Zou, C. B. Liu, F. Chen, and X. Zhou, Chem. Eng. J. 283, 266 (2016).

    Article  Google Scholar 

  23. M. D. Donohue and G. L. Aranovich, Fluid Phase Equilib. 158-160, 557 (1999).

    Article  Google Scholar 

  24. H. I. Kim, G. H. Moon, D. M. Satoca, Y. Park, and W. Y. Choi, J. Phys. Chem. C 116, 1535 (2012).

    Article  Google Scholar 

  25. Z. D. Meng, L. Zhu, J. G. Choi, C. Y. Park, and W. C. Oh, Nanoscale Res. Lett. 6, 459 (2011).

    Article  Google Scholar 

  26. R. Azumi, K. Kakiuchi, and M. Matsumoto, Bull. Chem. Soc. Jpn. 76, 1561 (2003).

    Article  Google Scholar 

  27. J. Wang, Y. W. Guo, J. Q. Gao, X. D. Jin, Z. Q. Wang, B. X. Wang, K. Li, and Y. Li, Ultrason. Sonochem. 18, 1028 (2011).

    Article  Google Scholar 

  28. D. Ma, M. Zhang, G. Xi, J. Zhang, and Y. Qian, Inorg. Chem. 45, 4845 (2006).

    Article  Google Scholar 

  29. H. Q. Cao, Y. J. Xiao, Y. X. Lu, J. F. Yin, B. J. Li, S. S. Wu, and X. M. Wu, Nano. Res. 3, 863 (2010).

    Article  Google Scholar 

  30. D. L. Miles and C. Espejo, Analyst 102, 104 (1977).

    Article  Google Scholar 

  31. X. Zhu, S. R. Castleberry, M. A. Nanny, and E. C. Butler, Environ. Sci. Technol. 39, 3784 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ze-Da Meng or Sukyoung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, ZD., Zhao, W. & Kim, S. Properties of photocatalytically generated oxygen species produced by Ag2Se-graphene oxide heterojunction and its application for the visible-light degradation of ammonia. Electron. Mater. Lett. 13, 518–526 (2017). https://doi.org/10.1007/s13391-017-6391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6391-3

Keywords

Navigation