Advertisement

Electronic Materials Letters

, Volume 13, Issue 5, pp 427–433 | Cite as

Facile synthesis of hierarchical CoMn2O4 microspheres with porous and micro-/nanostructural morphology as anode electrodes for lithium-ion batteries

  • Yana Li
  • Xianhua Hou
  • Yajie Li
  • Qiang Ru
  • Shaofeng Wang
  • Shejun Hu
  • Kwok-ho LamEmail author
Article

Abstract

Hierarchical CoMn2O4 microspheres assembled by nanoparticles have been successfully synthesized by a facile hydrothermal method and a subsequent annealing treatment. XRD detection indicate the crystal structure. SEM and TEM results reveal the 3-dimensional porous and micro-/nanostructural microsphere assembled by nanoparticles with a size of 20-100 nm. The CoMn2O4 electrode show initial specific discharge capacity of approximately 1546 mAh/g at the current rates 100 mA/g with a coulombic efficiency of 66.7% and remarkable specific capacities (1029-485 mAh/g) at various current rates (100-2800 mA/g).

Keywords

CoMn2O4 microspheres hydrothermal method crystal structure lithium ion batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. X. Zhang, Y. L. Wang, H. F. Jiu, W. H. Zheng, J. X. Chang, and G. F. He, Electrochim. Acta 182, 550 (2015).CrossRefGoogle Scholar
  2. 2.
    N. H. Zhao, G. J. Wang, Y. Huang, B. Wang, B. D. Yao, and Y. P. Wu, Chem. Mater. 20, 2612 (2008).CrossRefGoogle Scholar
  3. 3.
    Y. S. Zhu, F. X. Wang, L. L. Liu, S. Y. Xiao, Z. Chang, and Y. P. Wu, Energy Environ. Sci. 6, 618 (2013).CrossRefGoogle Scholar
  4. 4.
    R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, J. Mater. Chem. 21, 9938 (2011).CrossRefGoogle Scholar
  5. 5.
    P. G. Bruce, B. Scrosati, and J. M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2008).CrossRefGoogle Scholar
  6. 6.
    S. K. Ujjain, P. Ahuja, and R. K. Sharma, J. Mater. Chem. A. 3, 9925 (2015).CrossRefGoogle Scholar
  7. 7.
    X. W. Li, S. L. Xiong, J. F. Li, X. Liang, J. Z. Wang, J. Bai, and Y. T. Qian, Chem. Eur. J. 19, 11310 (2013).CrossRefGoogle Scholar
  8. 8.
    Y. R. Liu, B. C. Zhang, J. K. Feng, and S. L. Xiong, RSC Adv. 5, 26863 (2015).CrossRefGoogle Scholar
  9. 9.
    L. Zhou, D. Y. Zhao, and X. W. Lou, Adv. Mater. 24, 745 (2012).CrossRefGoogle Scholar
  10. 10.
    G. D. Li, L. Q. Xu, Y. J. Zhai, and Y. P. Hou, J. Mater. Chem. A. 3, 14298 (2015).CrossRefGoogle Scholar
  11. 11.
    M. H. Kim, Y. J. Hong, and Y. C. Kang, RSC Adv. 3, 13110 (2013).CrossRefGoogle Scholar
  12. 12.
    J. F. Ye, W. Liu, J. G. Cai, S. Chen, X. W. Zhao, and H. H. Zhou, J. Am. Chem. Soc. 133, 933 (2011).CrossRefGoogle Scholar
  13. 13.
    X. J. Hou, X. F. Wang, B. Liu, Q. F. Wang, T. Luo, D. Chen, and G. Z. Shen, Nanoscale 6, 8858 (2014).CrossRefGoogle Scholar
  14. 14.
    S. M. Oh, S. T. Myung, Y. S. Choi, K. H. Ohd, and Y. K. Sun, J. Mater. Chem. 21, 19368 (2011).CrossRefGoogle Scholar
  15. 15.
    F. X. Wang, Z. Chang, X. W. Wang, Y. F. Wang, B. W. Chen, Y. S. Zhu, and Y. P. Wu, J. Mater. Chem. A 3, 4840 (2015).CrossRefGoogle Scholar
  16. 16.
    Y. R. Liu, B. C. Zhang, J. K. Feng, and S. L. Xiong, RSC Adv. 5, 26863 (2015).CrossRefGoogle Scholar
  17. 17.
    W. H. Guo, X. X. Ma, X. L. Zhang, Y. Q. Zhang, D. L. Yu, and X. Q. He, RSC Adv. 6, 96436 (2016).CrossRefGoogle Scholar
  18. 18.
    L. Hu, H. Zhong, X. R. Zheng, Y. M. Huang, P. Zhang, and Q. W. Chen, Sci. Rep. 2, 986 (2012).CrossRefGoogle Scholar
  19. 19.
    P. Stefan, H. Holger, S. Marco, M. Stefan, M. Valeriu, K. P. Annie, I. Sylvio, S. Ulrich, K. Lorenz, D. Viola, H. Svenja, and B. Wolfgang, RSC Adv. 3, 23001 (2013).CrossRefGoogle Scholar
  20. 20.
    L. Wang, X. Zhao, Y. H. Lu, M. W. Xu, D.W. Zhang, and R. S. Ruoff, J. Electrochem. Soc. 158, A1379 (2011).CrossRefGoogle Scholar
  21. 21.
    H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Gosele, Nat. Mater. 5, 627 (2006).CrossRefGoogle Scholar
  22. 22.
    H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, Nanotechnology 17, 5157 (2006).CrossRefGoogle Scholar
  23. 23.
    J. Li, S. Xiong, X. Li, and Y. Qian, Nanoscale 5, 2045 (2013).CrossRefGoogle Scholar
  24. 24.
    L. Hu, H. Zhong, X. Zheng, Y. Huang, P. Zhang, and Q. Chen, Sci. Rep. 2, 986 (2012).CrossRefGoogle Scholar
  25. 25.
    M. H. Kim, Y. J. Hong, and Y. C. Kang, RSC Adv. 3, 13110 (2013).CrossRefGoogle Scholar
  26. 26.
    G. Li, L. Xu, Y. Zhai, and Y. Hou, J. Mater. Chem. A 3, 14298 (2015).CrossRefGoogle Scholar
  27. 27.
    J. Li, J. Wang, X. Liang, Z. Zhang, H. Liu, and Y. Qian, ACS Appl. Mater. Inter. 6, 24 (2014).CrossRefGoogle Scholar
  28. 28.
    J. Wang, Q. Zhang, X. Li, B. Zhang, L. Mai, and K. Zhang, Nano Energy 12, 437 (2015).CrossRefGoogle Scholar
  29. 29.
    C. Fu, G. Li, D. Luo, X. Huang, J. Zheng, and L. Li, ACS Appl. Mater. Inter. 6, 2439 (2014).CrossRefGoogle Scholar
  30. 30.
    S. W. Kim, H. W. Lee, P. Muralidharan, D. H. Seo, W. S. Yoon, D. K. Kim, and K. Kang, Nano Res. 4, 505 (2011).CrossRefGoogle Scholar
  31. 31.
    H. Lai, J. Li, Z. Chen, and Z. Huang, ACS Appl. Mater. Inter. 4, 2325 (2012).CrossRefGoogle Scholar
  32. 32.
    M. V. Reddy, G. V. S. Rao, and B. V. R. Chowdari, Chem. Rev. 113, 5364 (2013).CrossRefGoogle Scholar
  33. 33.
    Z. Bai, N. Fan, C. Sun, Z. Ju, C. Guo, J. Yang, and Y. Qian, Nanoscale 5, 2442 (2013).CrossRefGoogle Scholar
  34. 34.
    X. Xu, J. Liang, H. Zhou, D. Lv, F. Liang, Z. Yang, S. Ding, and D. Yu, J. Mater. Chem. 1, 2995 (2013).CrossRefGoogle Scholar
  35. 35.
    X. Wang, X. Li, X. Sun, F. Li, Q. Liu, Q. Wang, and D. He, J. Mater. Chem. 21, 3571 (2011).CrossRefGoogle Scholar
  36. 36.
    G. Zhou, D. W. Wang, F. Li, L. Zhang, N. Li, Z. S. Wu, L. Wen, G. Q. Lu, and H. M. Cheng, Chem. Mater. 22, 5306 (2010).CrossRefGoogle Scholar
  37. 37.
    S. Grugeon, S. Laruelle, L. Dupont, and J. M. Tarascon, Solid State Sci. 5, 895 (2003).CrossRefGoogle Scholar
  38. 38.
    W. Luo, X. Hu, Y. Sun, and Y. Huang, J. Mater. Chem. 22, 8916 (2012).CrossRefGoogle Scholar
  39. 39.
    L. Mao, K. Zhang, H. S. O. Chan, and J. Wu, J. Mater. Chem. 22, 1845 (2012).CrossRefGoogle Scholar
  40. 40.
    Y. Zhang, Y. Wang, Y. Xie, T. Cheng, W. Lai, H. Pang, and W. Huang, Nanoscale 6, 14354 (2014).CrossRefGoogle Scholar
  41. 41.
    N. Du, Y. F. Xu, H. Zhang, J. X. Yu, C. X. Zhai, and D. R. Yang, Inorg. Chem. 50, 3320 (2011).CrossRefGoogle Scholar
  42. 42.
    Z. Tan, Z. H. Sun, H. H. Wang, Q. Guo, and D. S. Su, J. Mater. Chem. A 1, 9462 (2013).CrossRefGoogle Scholar
  43. 43.
    Q. Qu, Y. Zhu, X. Gao, and Y. Wu, Adv. Energy Mater. 2, 950 (2012).CrossRefGoogle Scholar
  44. 44.
    W. Tang, L. Liu, Y. Zhu, H. Sun, Y. Wu, and K. Zhu, Energ. Environ. Sci. 5, 6909 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Yana Li
    • 1
    • 2
  • Xianhua Hou
    • 1
    • 2
  • Yajie Li
    • 1
    • 2
  • Qiang Ru
    • 1
    • 2
  • Shaofeng Wang
    • 1
    • 2
  • Shejun Hu
    • 1
    • 2
  • Kwok-ho Lam
    • 3
    Email author
  1. 1.Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection MaterialsGuangzhouChina
  2. 2.Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhouChina
  3. 3.Department of Electrical EngineeringThe Hong Kong Polytechnic UniversityHunghom Kowloon, Hong KongChina

Personalised recommendations