Skip to main content
Log in

Performance enhancement of quantum dot sensitized solar cells under TiO2 nanotube arrays membranes optimization

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

One-dimensional single crystalline TiO2 nanotube arrays with different length are prepared, and transferred onto the FTO glass substrate with different concentration of Ti-precursor. The relationships between the concentration of Ti-precursor and the optical properties, as well as the photovoltaic performance of the as-prepared solar cells have been investigated. The optical absorption intensity is obviously enhanced and optical absorption edge is expanded to 800 nm for the CdSe/CdS/TiO2 NTs solar cells. In addition, 20 μm - CdSe/CdS/TiO2 NTs solar cells with 0.1 M Ti-precursor have the great photovoltaic conversion efficiency of 4.18%. The excellent photovoltaic performance is attributed to the suitable TiO2 connection layer from 0.1 M Ti-precursor and length of TiO2 NTs, which greatly enhances the electron-hole generation and charge transfer performance in the solar cells. Finally, the photovoltaic efficiency of the as-fabricated solar cells can be further enhanced to 4.51% through the ZnS passivation layer deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Bergren, P. K. Palomaki, N. R. Neale, T. E. Furtak, and M. C. Beard, ACS Nano. 10, 2316 (2016).

    Article  Google Scholar 

  2. M. Molaei, H. Hasheminejad, and M. Karimipour, Electron. Mater. Lett. 11, 7 (2015).

    Article  Google Scholar 

  3. J. Du, Z. L. Du, J. S. Hu, Z. X. Pan, Q. Shen, J. K. Sun, D. H. Long, H. Dong, L. T. Sun, X. H. Zhong, and L. J. Wan, J. Am. Chem. Soc. 138, 4201 (2016).

    Article  Google Scholar 

  4. T. Debnath, P. Maity, T. Banerjee, A. Das, and H. N. Ghosh, J. Phys. Chem. C 119, 3522 (2015).

    Article  Google Scholar 

  5. G. H. Carey, A. L. Abdelhady, Z. J. Ning, S. M. Thon, O. M. Bakr, and E. H. Sargent, Chem. Rev. 115, 12732 (2015).

    Article  Google Scholar 

  6. I. Jang, J. W. Kim, C. J. Park, C. Ippert, T. Greco, M. S. Oh, J. G. Lee, W. K. Kim, A. Wedel, C. J. Han, and S. K. Park, Electron. Mater. Lett. 11, 1066 (2015).

    Article  Google Scholar 

  7. X. W. Gong, Z. Y. Yang, G. Walters, R. Comin, Z. J. Ning, E. Beauregard, V. Adinolfi, O. Voznyy, and E. H. Sargent, Nature Photon. 10, 253 (2016).

    Article  Google Scholar 

  8. N. Y. Tam, N. Y. Truong, and C. H. Park, Electron. Mater. Lett. 12, 308 (2016).

    Article  Google Scholar 

  9. M. X. Liu, F. P. Arquer, Y. Y. Li, X. Z. Lan, G. H. Kim, O. Voznyy, L. K. Jagadamma, A. S. Abbas, S. Hoogland, Z. H. Lu, J. Y. Kim, A. Amassian, and E. H. Sargent, Adv. Mater. 28, 4142 (2016).

    Article  Google Scholar 

  10. Z. Y. Peng, Y. L. Liu, Y. H. Zhao, K. Q. Chen, Y. Q. Cheng, and W. Chen, Electrochim. Acta 135, 276 (2014).

    Article  Google Scholar 

  11. X. Z. Lan, O. Voznyy, A. Kiani, F. P. Arquer, A. S. Abbas, G. H. Kim, M. X. Liu, Z. Y. Yang, G. Walters, J. X. Xu, M. J. Yuan, Z. J. Ning, F. J. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E. H. Sargent, Adv. Mater. 28, 299 (2016).

    Article  Google Scholar 

  12. Z. Y. Peng, Y. L. Liu, K. Q. Chen, G. J. Yang, and W. Chen, Chem. Eng. J. 244, 335 (2014).

    Article  Google Scholar 

  13. Z. W. Ren, J. Wang, Z. X. Pan, K. Zhao, H. Zhang, Y. Li, Y. X. Zhao, I. M. Sero, J. Bisquert, and X. H. Zhong, Chem. Mater. 27, 8398 (2015).

    Article  Google Scholar 

  14. J. H. Im, J. S. Luo, M. Franckevicius, N. Pellet, P. Gao, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and N. G. Park, Nano Lett. 15, 2120 (2015).

    Article  Google Scholar 

  15. Z. Y. Peng, Y. L. Liu, Y. H. Zhao, W. Shu, K. Q. Chen, Q. L. Bao, and W. Chen, Electrochem. Acta 111, 755 (2013).

    Article  Google Scholar 

  16. C. Ngangham, A. Mondal, and B. Choudhuri, Electron. Mater. Lett. 11, 758 (2015).

    Article  Google Scholar 

  17. Z. C. Lian, W. C. Wang, S. N. Xiao, X. Li, Y. Y. Cui, D. Q. Zhang, G. S. Li, and X. Li, Sci. Rep. 5, 10461 (2015).

    Article  Google Scholar 

  18. C. S. Kim, S. H. Kim, J. H. Lee, J. Y. Kim, and J. Y. Yoon, ACS Appl. Mater. Interfaces 7, 7486 (2015).

    Article  Google Scholar 

  19. S. Gimenez, I. M. Sero, L. Macor, N. Guijarro, T. L. Villarreal, R. Gomez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, Nanotechnology 20, 295204 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoyin Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Liu, Y., Zhao, Y. et al. Performance enhancement of quantum dot sensitized solar cells under TiO2 nanotube arrays membranes optimization. Electron. Mater. Lett. 13, 359–367 (2017). https://doi.org/10.1007/s13391-017-6219-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6219-1

Keywords

Navigation