Electronic Materials Letters

, Volume 13, Issue 1, pp 25–28 | Cite as

Novel ZnO:Li phosphors for electronics and dosimetry applications

  • Jorge Luis Iriqui Razcón
  • Catalina Cruz VázquezEmail author
  • Rodolfo Bernal
  • Hugo Alejandro Borbón Nuñez
  • Victor Manuel CastañoEmail author


Novel ZnO:Li thermoluminescent phosphors were synthesized by a chemical method. Pellet-shaped samples were exposed to beta radiation to investigate their dosimetric capabilities. Some samples were exposed to beta particle irradiation for doses from 50 up to 1600 Gy, and it was found that the thermoluminescence response is a linear function in all over the dose range studied. The glow curve exhibits two maxima, centered at 385 and 507 K. The maximum located at 507 K shifts to lower temperatures as dose increases, indicating that second order kinetics thermoluminescence processes are involved. The results indicate that these new ZnO:Li phosphors are promising detectors and dosimeters for beta radiation.


Zn:Li phosphors thermoluminescence beta radiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
  2. 2.
    G.-H. Lee, Electron. Mater. Lett. 6, 155 (2010).CrossRefGoogle Scholar
  3. 3.
    S. Kim, M. S. Kim, G. Nam, and J.-Y. Leem, Electron. Mater. Lett. 8, 445 (2012).CrossRefGoogle Scholar
  4. 4.
    D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, Mater. Today 7, 34 (2004).CrossRefGoogle Scholar
  5. 5.
    C. Rauch, W. Gehlhoff, M. R. Wagner, E. Malguth, G. Callsen, R. Kirste, B. Salameh, A. Hoffmann, S. Polarz, Y. Aksu, and M. Driess, J. Appl. Phys. 107, 024311 (2010).CrossRefGoogle Scholar
  6. 6.
    S. Chawla, K. Jayanthi, and R. K. Kotnala, Phys. Rev. B 79, 125204 (2009).CrossRefGoogle Scholar
  7. 7.
    S. W. S. McKeever and R. Chen, Radiat. Meas. 27, 626 (1997).Google Scholar
  8. 8.
    D. De Muer and W. Maenhout-Van Der Vorst, Physica 39, 123 (1968).CrossRefGoogle Scholar
  9. 9.
    M. A. Seitz, W. F. Pinter, and W. M. Hirthe, Mat. Res. Bull. 6, 275 (1971).CrossRefGoogle Scholar
  10. 10.
    C. Cruz-Vázquez, R. Bernal, S. E. Burruel-Ibarra, H. Grijalva- Monteverde, and M. Barboza-Flores, Opt. Mater. 27, 1235 (2005).CrossRefGoogle Scholar
  11. 11.
    U. Pal, R. Meléndrez, V. Chernov, and M. Barboza-Flores, Appl. Phys. Lett. 89, 183118 (2006).CrossRefGoogle Scholar
  12. 12.
    C. Cruz-Vázquez, V. R. Orante-Barrón, H. Grijalva-Monteverde, V. M. Castaño, and R. Bernal, Mater. Lett. 61,1097 (2007).CrossRefGoogle Scholar
  13. 13.
    U. Pal, R. Meléndrez, V. Chernov, and M. Barboza-Flores, J. Nanosci. Nanotechno. 8, 1–6 (2008).CrossRefGoogle Scholar
  14. 14.
    Dojalisa Sahu, B. S. Acharya, B. P. Bag, Th. Basanta Singh, and R. K. Gartia, J. Lumin. 130, 1371 (2010).CrossRefGoogle Scholar
  15. 15.
    M. Wang, E. W. Shin, J. S. Chung, S. H. Hur, E. J. Kim, S. H. Hahn, and K.-K. Koo, J. Mater. Sci. 45, 4111 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Jorge Luis Iriqui Razcón
    • 1
  • Catalina Cruz Vázquez
    • 1
    Email author
  • Rodolfo Bernal
    • 2
  • Hugo Alejandro Borbón Nuñez
    • 3
  • Victor Manuel Castaño
    • 4
    Email author
  1. 1.Departamento de Investigación en Polímeros y Materiales de la Universidad de SonoraHermosillo, SonoraMéxico
  2. 2.Departamento de Investigación en Física de la Universidad de SonoraHermosillo, SonoraMéxico
  3. 3.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMéxico
  4. 4.CIATEQ-Centro de Tecnología AvanzadaQuerétaroMéxico

Personalised recommendations