Electronic Materials Letters

, Volume 13, Issue 3, pp 277–285 | Cite as

Ion-beam-irradiated CYTOP-transferred graphene for liquid crystal cells

  • Jeong Hyeon Oh
  • Gyu Jin Choi
  • Ki Chang Kwon
  • Sa-Rang Bae
  • Ho Won Jang
  • Jin Seog Gwag
  • Soo Young Kim
Article
  • 48 Downloads

Abstract

The twisted nematic liquid crystal cell was developed by using a CYTOP-transferred graphene sheet as an electrode and an alignment layer. A graphene layer was synthesized by chemical vapor deposition and transferred onto a plastic substrate using a fluoropolymer known as CYTOP. As the ion-beam treatment time increased, the sheet resistance increased from 500 to 1100 Ω/sq., while the water contact angle decreased from 110.5° to 69.7°. The increased intensities of the D and G′ bands and the appearance of D + D″ and D + G′ bands in the Raman spectra indicated the formation of defects because of the ion-beam treatment. An ion-beam exposure time of 15 s was found to be the most effective for the production of CYTOP-transferred graphene and for achieving high contrast in operating cells. The ion beam detached F from the CYTOP-transferred graphene layer, and the resulting exposure of the C=C bond on the graphene surface affected the alignment of liquid crystal molecules. Based on these results, the technique described here has applications in novel, high-performance liquid crystal displays that do not require indium-tin-oxide electrodes and polyimide alignment layers. Sheets synthesized by chemical vapor deposition were transferred and simultaneously doped using fluoropolymer supporting layers.

Keywords

graphene fluoropolymer ion-beam irradiation transparent electrode alignment layer liquid crystal displays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.-H. Kim and J.-K. Song, NPG Asia Mat. 1, 29 (2009).CrossRefGoogle Scholar
  2. 2.
    M. F. Toney, T. P. Russel, J. A. Logan, H. Kikuchi, J. M. Sands, and K. S. Kumar, Nature 374, 709 (1995).CrossRefGoogle Scholar
  3. 3.
    P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, Nature 411, 56 (2001).CrossRefGoogle Scholar
  4. 4.
    O. Yaroshchuk and Y. Reznikov, J. Mater. Chem. 22, 286 (2012).CrossRefGoogle Scholar
  5. 5.
    G. Hegde, O. Yaroshchuk, R. Kravchuk, A. Murauski, V. Chigrinov, and H. S. Kwok, J. Soc. Inf. Disp. 16, 1075 (2008).CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, Q. Liu, H. Mundoor, Y. Yuan, and I. I. Smalyukh, ACS Nano 9, 3097 (2015).CrossRefGoogle Scholar
  7. 7.
    A. Khakhlou, A. Murauski, O. Yaroshchuk, E. Telesh, and R. Kravchuk, J. Soc. Inf. Disp. 14, 257 (2006).CrossRefGoogle Scholar
  8. 8.
    P. Chaudhari, J. A. Lacey, S.-C. A. Lien, and J. L. Speidell, Jpn. J. Appl. Phys. 37, L55 (1998).CrossRefGoogle Scholar
  9. 9.
    H.-C. Jeong, H.-G. Park, J. H. Lee, Y. H. Jung, S. B. Jang, and D.-S. S. Seo, Sci. Rep. 5, 8641 (2015).CrossRefGoogle Scholar
  10. 10.
    P. K. Son, J. H. Park, S. S. Cha, J. C. Kim, T.-H. Yoon, S. J. Rho, B. K. Jeon, J. S. Kim, S. K. Lim, and K. H. Kim, Appl. Phys. Lett. 88, 263512 (2006).CrossRefGoogle Scholar
  11. 11.
    P. K. Son, J. H. Park, J. C. Kim, T.-H. Yoon, S. J. Rho, B. K. Jeon, S. T. Shin, J. S. Kim, and S. K. Lim, Appl. Phys. Lett. 91, 103513 (2007).CrossRefGoogle Scholar
  12. 12.
    A. K. Geim, Science 324, 1530 (2009).CrossRefGoogle Scholar
  13. 13.
    D. M. Andoshe, J.-M. Jeon, S. Y. Kim, and H. W. Jang, Electron. Mater. Lett. 11, 323 (2015).CrossRefGoogle Scholar
  14. 14.
    X. Mu, X. Liu, K. Zhang, J. Li, J. Zhou, E. Xie, and Z. Zhang, Electron. Mater. Lett. 12, 296 (2016).CrossRefGoogle Scholar
  15. 15.
    D. Ghosh and S. O. Kim, Electron. Mater. Lett. 11, 719 (2015).CrossRefGoogle Scholar
  16. 16.
    M. J. Kiani, E. Akbari, F. Rahmanian Kooshkaki, and A. Zeinalinezhad, Electron. Mater. Lett. 12, 2193 (2016).Google Scholar
  17. 17.
    R. Jan, A. Habib, and I. H. Gul, Electron. Mater. Lett. 12, 91 (2016).CrossRefGoogle Scholar
  18. 18.
    K. C. Kwon, J. Ham, S. Kim, J.-L. Lee, and S. Y. Kim, Sci. Rep. 4, 4830 (2014).CrossRefGoogle Scholar
  19. 19.
    K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).CrossRefGoogle Scholar
  20. 20.
    M. Hofmann, Y.-P. Hsieh, A. L. Hsu, and J. Kong, Nanoscale 6, 289 (2014).CrossRefGoogle Scholar
  21. 21.
    J.-S. Oh, S.-H. Kim, T. Hwang, H.-Y. Kwon, T. H. Lee, A.-H. Bae, H. R. Choi, and J.-D. Nam, J. Phys. Chem. C 117, 663 (2013).CrossRefGoogle Scholar
  22. 22.
    L. Zhang, S. Diao, Y. Nie, K. Yan, N. Liu, B. Dai, Q. Xie, A. Reina, J. Kong, and Z. Liu, J. Am. Chem. Soc. 133, 2706 (2011).CrossRefGoogle Scholar
  23. 23.
    B. Song, G. F. Schneider, Q. Xu, G. Pandraud, C. Dekker, and H. Zandbergen, Nano Lett. 11, 2247 (2011).CrossRefGoogle Scholar
  24. 24.
    Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, Adv. Mater. 23, 3061 (2011).CrossRefGoogle Scholar
  25. 25.
    K. C. Kwon, P. K. Son, and S. Y. Kim, Carbon 67, 352 (2014).CrossRefGoogle Scholar
  26. 26.
    K. C. Kwon, S. Kim, C. Kim, J.-L. Lee, and S. Y. Kim, Org. Electron. 15, 3154 (2014).CrossRefGoogle Scholar
  27. 27.
    S. K. Lee, J. W. Yang, H. H. Kim, S. B. Jo, B. Kang, H. Bong, H. C. Lee, G. Lee, K. S. Kim, and K. Cho, ACS Nano 8, 7968 (2014).CrossRefGoogle Scholar
  28. 28.
    W. H. Lee, J. W. Suk, J. Lee, Y. Hao, J. Park, J. W. Yang, H.-W. Ha, S. Murali, H. Chou, and D. Akinwande, ACS Nano 6, 1284 (2012).CrossRefGoogle Scholar
  29. 29.
    J. B. Bult, R. Crisp, C. L. Perkins, and J. L. Blackburn, ACS Nano 7, 7251 (2013).CrossRefGoogle Scholar
  30. 30.
    S. Tongay, K. Berke, M. Lemaitre, Z. Nasrollahi, D. B. Tanner, A. F. Hebard, and B. R. Appleton, Nanotechnology 22, 425701 (2011).CrossRefGoogle Scholar
  31. 31.
    A. Jorio, M. M. Lucchese, F. Stavale, E. H. Ferreira, M. V. O. Moutinho, R. B. Capaz, and C. A. Achete J. Phys.-Condens. Matter. 22, 334204 (2010).CrossRefGoogle Scholar
  32. 32.
    A. Merrill, C. D. Cress, J. E. Rossi, N. D. Cox, and B. J. Landi, Phys. Rev. B 92, 075404 (2015).CrossRefGoogle Scholar
  33. 33.
    P. K. Srivastava and S. Ghosh, Nanoscale 7, 16079 (2015).CrossRefGoogle Scholar
  34. 34.
    J. B. Chae, J. O. Kwon, J. S. Yang, D. Kim, K. Rhee, and S. K. Chung, Sensor Actuat. A-Phys. 215, 8 (2014).CrossRefGoogle Scholar
  35. 35.
    T. Bharathidasan, T. N. Narayanan, S. Sathyanaryanan, and S. S. Sreejakumari, Carbon 84, 207 (2015).CrossRefGoogle Scholar
  36. 36.
    A. C. Ferrari and D. M. Basko, Nat. Nanotechnol. 8, 235 (2013).CrossRefGoogle Scholar
  37. 37.
    B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, and J. R. Gong, Nano Lett. 10, 4975 (2010).CrossRefGoogle Scholar
  38. 38.
    G. Nanda, S. Goswami, K. Watanabe, T. Taniguchi, and P. F. A. Alkemade, Nano Lett. 15, 4006 (2015).CrossRefGoogle Scholar
  39. 39.
    S. Mathew, T. K. Chan, D. Zhan, K. Gopinadhan, A.-R. Barman, M. B. H. Breese, S. Dhar, Z. X. Shen, T. Venkatesan, and J. T. L. Thong, Carbon 49, 1720 (2011).CrossRefGoogle Scholar
  40. 40.
    L. Wang, Z. Sofer, P. Šimek, I. Tomandl, and M. Pumera, J. Phys. Chem. C 117, 23251 (2013).CrossRefGoogle Scholar
  41. 41.
    L. Fan, H. Zhang, P. Zhang, and X. Sun, Appl. Surf. Sci. 347, 632 (2015).CrossRefGoogle Scholar
  42. 42.
    J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, and E. S. Snow, Nano Lett. 10, 3001 (2010).CrossRefGoogle Scholar
  43. 43.
    J.-E. Park, Y. J. Jang, Y. J. Kim, M.-S. Song, S. Yoon, D. H. Kim, and S.-J. Kim, Phys. Chem. Chem. Phys. 16, 103 (2014).CrossRefGoogle Scholar
  44. 44.
    L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, Nano Lett. 11, 3190 (2011).CrossRefGoogle Scholar
  45. 45.
    C. Casiraghi, Phys. Rev. B 80, 233407 (2009).CrossRefGoogle Scholar
  46. 46.
    A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nat. Nanotechnol. 3, 210 (2008).CrossRefGoogle Scholar
  47. 47.
    Z. Xu, Z. Ao, D. Chu, A. Younis, C. M. Li, and S. Li, Sci. Rep. 4, 6450 (2014).CrossRefGoogle Scholar
  48. 48.
    Q. V. Le, C. M. Kim, T. P. Nguyen, M. Park, T.-Y. Kim, S. M. Han, and S. Y. Kim, Chem. Eng. J. 284, 285 (2016).CrossRefGoogle Scholar
  49. 49.
    P. Gong, J. Wang, W. Sun, D. Wu, Z. Wang, Z. Fan, H. Wang, X. Han, and S. Yang, Nanoscale 6, 3316 (2014).CrossRefGoogle Scholar
  50. 50.
    K. C. Kwon, K. S. Choi, and S. Y. Kim, Adv. Funct. Mater. 22, 4724 (2012).CrossRefGoogle Scholar
  51. 51.
    R. Memmer and O. Fliegans, Phys. Chem. Chem. Phys. 5, 558 (2003).CrossRefGoogle Scholar
  52. 52.
    D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, Nat. Nanotechnol. 7, 29 (2012).CrossRefGoogle Scholar
  53. 53.
    A. M. Shehzad, D. H. Tien, M. W. Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, Sci. Rep. 5, 13331 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Jeong Hyeon Oh
    • 1
  • Gyu Jin Choi
    • 2
  • Ki Chang Kwon
    • 3
  • Sa-Rang Bae
    • 1
  • Ho Won Jang
    • 3
  • Jin Seog Gwag
    • 2
  • Soo Young Kim
    • 1
  1. 1.School of Chemical Engineering and Materials ScienceChung-Ang UniversitySeoulKorea
  2. 2.Department of PhysicsYeungnam UniversityGyeongsanKorea
  3. 3.Department of Materials Science and Engineering, Research Institute of Advanced MaterialsSeoul National UniversitySeoulKorea

Personalised recommendations