Electronic Materials Letters

, Volume 12, Issue 6, pp 795–803 | Cite as

Architectural modifications for flexible supercapacitor performance optimization

  • Jari Keskinen
  • Suvi Lehtimäki
  • Arman Dastpak
  • Sampo Tuukkanen
  • Timo Flyktman
  • Thomas Kraft
  • Anna Railanmaa
  • Donald Lupo
Article

Abstract

We have developed material and architectural alternatives for flexible supercapacitors and investigated their effect on practical performance. The substrate alternatives include paperboard as well as various polyethylene terephthalate (PET) films and laminates, with aqueous NaCl electrolyte used in all devices. In all the supercapacitors, activated carbon is used as the active layer and graphite ink as the current collector, with various aluminium or copper structures applied to enhance the current collectors’ conductivity. The capacitance of the supercapacitors was between 0.05 F and 0.58 F and their equivalent series resistance (ESR) was from <1 Ω to 14 Ω, depending mainly on the current collector structure. Furthermore, leakage current and selfdischarge rates were defined and compared for the various architectures. The barrier properties of the supercapacitor encapsulation have a clear correlation with leakage current, as was clearly shown by the lower leakage in devices with an aluminium barrier layer. A cycle life test showed that after 40000 charge-discharge cycles the capacitance decreases by less than 10%.

Keywords

supercapacitor electric double layer capacitor energy storage substrate current collector aqueous electrolyte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer US, Boston, USA (1999).CrossRefGoogle Scholar
  2. 2.
    M. Lu, F. Béguin, and E. Frackowiak, Supercapacitors: Materials, Systems, and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2013).Google Scholar
  3. 3.
    R. Moscatiello, SGIA J. (1st Quarter) 25 (2005).Google Scholar
  4. 4.
    B. Dyatkin, V. Presser, M. Heon, M. R. Lukatskaya, M. Beidaghi, and Y. Gogotsi, ChemSusChem. 6, 2269 (2013).CrossRefGoogle Scholar
  5. 5.
    J. Keskinen, E. Sivonen, S. Jussila, M. Bergelin, M. Johansson, A. Vaari, and M. Smolander, Electrochim. Acta 85, 302 (2012).CrossRefGoogle Scholar
  6. 6.
    S. Lehtimäki, S. Tuukkanen, J. Pörhönen, P. Moilanen, J. Virtanen, M. Honkanen, and D. Lupo, Appl. Phys. A 117, 1329 (2014).CrossRefGoogle Scholar
  7. 7.
    K. Torvinen, S. Lehtimäki, J. T. Keränen, J. Sievänen, J. Vartiainen, E. Hellén, D. Lupo, and S. Tuukkanen, Electron. Mater. Lett. 11, 1040 (2015).CrossRefGoogle Scholar
  8. 8.
    J. Keskinen, E. Sivonen, M. Bergelin, J. E. Eriksson, P. Sjöberg-Eerola, M. Valkiainen, M. Smolander, A. Vaari, J. Uotila, H. Boer, and S. Tuurala, Adv. Sci. Technol. 72, 331 (2010).CrossRefGoogle Scholar
  9. 9.
    B. C. Kim, J.-Y. Hong, G. G. Wallace, and H. S. Park, Adv. Energy Mater. 5, n/a (2015).Google Scholar
  10. 10.
    A. El Hajj, T. M. Kraft, B. Lucas, M. Schirr-Bonnans, B. Ratier, and P. Torchio, J. Appl. Phys. 115, 033103 (2014).CrossRefGoogle Scholar
  11. 11.
    Y. H. Lee, J. S. Kim, J. Noh, I. Lee, H. J. Kim, S. Choi, J. Seo, S. Jeon, T. S. Kim, J. Y. Lee, and J. W. Choi, Nano Lett. 13, 5753 (2013).CrossRefGoogle Scholar
  12. 12.
    Z. Cui, F. R. Poblete, G. Cheng, S. Yao, X. Jiang, and Y. Zhu, J. Mater. Res. 30, 79 (2015).Google Scholar
  13. 13.
    J. Bae, M. K. Song, Y. J. Park, J. M. Kim, M. Liu, and Z. L. Wang, Angew. Chemie - Int. Ed. 50, 1683 (2011).CrossRefGoogle Scholar
  14. 14.
    Z. Yang, J. Deng, X. Chen, J. Ren, and H. Peng, Angew. Chemie - Int. Ed. 52, 13453 (2013).CrossRefGoogle Scholar
  15. 15.
    T. Kim, H. Song, J. Ha, S. Kim, D. Kim, S. Chung, J. Lee, and Y. Hong, Appl. Phys. Lett. 104, 113103 (2014).CrossRefGoogle Scholar
  16. 16.
    J. Pörhönen, S. Rajala, S. Lehtimäki, and S. Tuukkanen, IEEE Trans. Electron Devices 61, 3303 (2014).CrossRefGoogle Scholar
  17. 17.
    S. Lehtimäki, M. Li, J. Salomaa, J. Pörhönen, A. Kalanti, S. Tuukkanen, P. Heljo, K. Halonen, and D. Lupo, Int. J. Electr. Power Energy Syst. 58, 42 (2014).CrossRefGoogle Scholar
  18. 18.
    F. Pettersson, J. Keskinen, T. Remonen, L. von Hertzen, E. Jansson, K. Tappura, Y. Zhang, C.-E. Wilén, and R. Österbacka, J. Power Sources 271, 298 (2014).CrossRefGoogle Scholar
  19. 19.
    D. Wei, S. J. Wakeham, T. Wing, M. J. Thwaites, H. Brown, P. Beecher, T. W. Ng, M. J. Thwaites, H. Brown, and P. Beecher, Electrochem. Commun. 11, 2285 (2009).CrossRefGoogle Scholar
  20. 20.
    M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner, Nano Lett. 9, 1872 (2009).CrossRefGoogle Scholar
  21. 21.
    K. Jost, C. R. Perez, J. K. McDonough, V. Presser, M. Heon, G. Dion, and Y. Gogotsi, Energy Environ. Sci. 4, 5060 (2011).CrossRefGoogle Scholar
  22. 22.
    L. Hu, H. Wu, and Y. Cui, Appl. Phys. Lett. 96, 183502 (2010).CrossRefGoogle Scholar
  23. 23.
    L. T. Le, M. H. Ervin, H. Qiu, B. E. Fuchs, and W. Y. Lee, Electrochem. Commun. 13, 355 (2011).CrossRefGoogle Scholar
  24. 24.
    P. Kossyrev, J. Power Sources 201, 347 (2012).CrossRefGoogle Scholar
  25. 25.
    S. Lawes, A. Riese, Q. Sun, N. Cheng, and X. Sun, Carbon N. Y. 92, 150 (2015).CrossRefGoogle Scholar
  26. 26.
    O. S. Nissen, H. C. Beck, and M. Schou, Patent No. 6,341,057 (2002).Google Scholar
  27. 27.
    J. Lang, US Patent 6937460 B2 (2005).Google Scholar
  28. 28.
    C. Z. Meng, C. H. Liu, L. Z. Chen, C. H. Hu, and S. S. Fan, Nano Lett. 10, 4025 (2010).CrossRefGoogle Scholar
  29. 29.
    J. Keskinen, S. Tuurala, M. Sjödin, K. Kiri, L. Nyholm, T. Flyktman, M. Strømme, and M. Smolander, Synth. Met. 203, 192 (2015).CrossRefGoogle Scholar
  30. 30.
    V. L. Pushparaj, M. M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R. J. Linhardt, O. Nalamasu, and P. M. Ajayan, Proc. Natl. Acad. Sci. U. S. A. 104, 13574 (2007).CrossRefGoogle Scholar
  31. 31.
    C. Portet, P. L. Taberna, P. Simon, and C. Laberty-Robert, Electrochim. Acta 49, 905 (2004).CrossRefGoogle Scholar
  32. 32.
    International Standard: Fixed Electric Double Layer Capacitors for Use in Electronic Equipment, IEC 62391-2-1 (2006).Google Scholar
  33. 33.
    M. Hahn, P. Furrer, B. Schnyder, M. Baertsch, R. Koetz, O. Haas, C. Ohler, and M. W. Carlen, in Proc. 10th Int. Semin. Double Layer Capacit. Similar Energy Storage Devices Deerfield Beach, pp. 1–12, Florida, USA (2000).Google Scholar
  34. 34.
    M. Kaus, J. Kowal, and D. U. Sauer, Electrochim. Acta 55, 7516 (2010).CrossRefGoogle Scholar
  35. 35.
    J. Black and H. Andreas, Electrochim. Acta 54, 3568 (2009).CrossRefGoogle Scholar
  36. 36.
    B. E. Conway, W. G. Pell, and T.-C. Liu, J. Power Sources 65, 53 (1997).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jari Keskinen
    • 1
  • Suvi Lehtimäki
    • 1
  • Arman Dastpak
    • 1
  • Sampo Tuukkanen
    • 2
  • Timo Flyktman
    • 3
  • Thomas Kraft
    • 1
  • Anna Railanmaa
    • 1
  • Donald Lupo
    • 1
  1. 1.Electronics and Communications EngineeringTampere University of TechnologyTampereFinland
  2. 2.Automation Science and EngineeringTampere University of TechnologyTampereFinland
  3. 3.VTT Technical Research Centre of Finland LtdTampereFinland

Personalised recommendations