Influence of annealing atmosphere on the electrical conductivity of copper nanoparticle films

Abstract

The oxidation, organic decomposition, and grain growth of Cu nanoparticles were systematically investigated under various heat-treatment conditions to understand the correlation between the heat-treatment condition and the electrical conductivity of nanoparticle-based copper films. The resistivity of Cu films annealed at 400°C in N2 gas was ∼3 × 102 μΩ·cm, which is two orders lower than that of a Cu film annealed in a reducing gas (∼104 μΩ·cm). The lowest resistivity of 9 μΩ·cm was achieved at an annealing temperature of 600°C in N2 gas. The N2 atmosphere containing a fairly small amount of O2 was found to remove residual organics easily and facilitate the grain growth of Cu nanoparticles, thereby yielding Cu films with superior electrical conductivity. These results clearly demonstrate the importance of precise control of oxygen during the annealing process.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. Yabuki and N. Arriffin, Thin Solid Films 518, 7033 (2010).

    Article  Google Scholar 

  2. 2.

    H. W. Lin, C. P. Chang, W. H. Hwu, and M. D. Ger, J. Mater. Process. Technol. 197, 284 (2008).

    Article  Google Scholar 

  3. 3.

    T. M. Lee, J. H. Noh, C. H. Kim, J. Jo, and D. S. Kim, Thin Solid Films 518, 3355 (2010).

    Article  Google Scholar 

  4. 4.

    Y.-H. Choi, J. Lee, S. J. Kim, D.-H. Yeon, and Y. Byun, J. Mater. Chem. 22, 3624 (2012).

    Article  Google Scholar 

  5. 5.

    W.-S. Han, Electron. Mater. Lett. 11, 702 (2015).

    Article  Google Scholar 

  6. 6.

    A. S. Zuruzi and K. S. Siow, Electron. Mater. Lett. 11, 308 (2015).

    Article  Google Scholar 

  7. 7.

    K. Woo, Y. Kim, B. Lee, J. Kim, and J. Moon, ACS Appl. Mater. Inter. 3, 2377 (2011).

    Article  Google Scholar 

  8. 8.

    L. D. Valladares, D. H. Salinas, A. B. Dominguez, D. A. Najarro, S. I. Khondaker, T. Mitrelias, C. H. W. Barnes, J. A. Aguiar, and Y. Majima, Thin Solid Films 520, 6368 (2012).

    Article  Google Scholar 

  9. 9.

    I. Reinhold, C. E. Hendriks, R. Eckardt, J. M. Kranenburg, J. Perelaer, R. R. Baumann, and U. S. Schubert, J. Mater. Chem. 19, 3384 (2009).

    Article  Google Scholar 

  10. 10.

    J. Perelaer, B. J. de Gans, and U. S. Schubert, Adv. Mater. 18, 2101 (2006).

    Article  Google Scholar 

  11. 11.

    B. Y. Wang, T. H. Yoo, Y. W. Song, D. S. Lim, and Y. J. Oh, ACS Appl. Mater. Inter. 5, 4113 (2013).

    Google Scholar 

  12. 12.

    T. P. Ang, T. S. A. Wee, and W. S. Chin, J. Phys. Chem. B 108, 11001 (2004).

    Article  Google Scholar 

  13. 13.

    P. Kanninen, C. Johans, J. Merta, and K. Kontturi, J. Colloid Interface Sci. 318, 88 (2008).

    Article  Google Scholar 

  14. 14.

    V. Engels, F. Benaskar, D. A. Jefferson, B. F. G. Johnson, and A. E. H. Wheatley, Dalton T 39, 6496 (2010).

    Google Scholar 

  15. 15.

    Y. Kobayashi, S. Ishida, K. Ihara, Y. Yasuda, T. Morita, and S. Yamada, Colloid Polym. Sci. 287, 877 (2009).

    Article  Google Scholar 

  16. 16.

    I. Reinhold, C. E. Hendriks, R. Eckardt, J. M. Kranenburg, J. Perelaer, R. R. Baumann, and U. S. Schubert, J. Mater. Chem. 19, 3384 (2009).

    Article  Google Scholar 

  17. 17.

    P. Pulkkinen, J. Shan, K. Leppanen, A. Kansakoski, A. Laiho, M. Jarn, and H. Tenhu, ACS Appl. Mater. Inter. 1, 519 (2009).

    Article  Google Scholar 

  18. 18.

    B. K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, and J. S. Kim, J. Colloid Interface Sci. 311, 417 (2007).

    Article  Google Scholar 

  19. 19.

    S. Jeong, K. Woo, D. Kim, S. Lim, J. S. Kim, H. Shin, Y. N. Xia, and J. Moon, Adv. Funct. Mater. 18, 679 (2008).

    Article  Google Scholar 

  20. 20.

    D. Everett, Chem. Educator 3, 1 (1998).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hyunho Shin or Hyun Suk Jung.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kong, D.S., Han, G.S., Kim, M.J. et al. Influence of annealing atmosphere on the electrical conductivity of copper nanoparticle films. Electron. Mater. Lett. 12, 338–342 (2016). https://doi.org/10.1007/s13391-016-5386-9

Download citation

Keywords

  • copper nanoparticles
  • copper oxide
  • organic decomposition
  • grain growth
  • conductivity