Electronic Materials Letters

, Volume 11, Issue 5, pp 719–734 | Cite as

Chemically modified graphene based supercapacitors for flexible and miniature devices

Review Paper 2015 POSCO Academic Award Article

Abstract

Rapid progress in the portable and flexible electronic devises has stimulated supercapacitor research towards the design and fabrication of high performance flexible devices. Recent research efforts for flexible supercapacitor electrode materials are highly focusing on graphene and chemically modified graphene owing to the unique properties, including large surface area, high electrical and thermal conductivity, excellent mechanical flexibility, and outstanding chemical stability. This invited review article highlights current status of the flexible electrode material research based on chemically modified graphene for supercapacitor application. A variety of electrode architectures prepared from chemically modified graphene are summarized in terms of their structural dimensions. Novel prototypes for the supercapacitor aiming at flexible miniature devices, i.e. microsupercapacitor with high energy and power density are highlighted. Future challenges relevant to graphene-based flexible supercapacitors are also suggested.

Keywords

graphene supercapacitor miniature electrode flexible 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Conway, Electrochemical Supercapacitors, Kluwer Academic/Plenum Publishers, New York, 2nd edn, 1999.CrossRefGoogle Scholar
  2. 2.
    Y. Shao, M. F. El-Kady, L. J. Wang, Q. Zhang, Y. Li, H. Wang, M. F. Mousavi, and R. B. Kaner, Chem. Soc. Rev. 44, 3639 (2015).CrossRefGoogle Scholar
  3. 3.
    U. N. Maiti, W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, J. Shim, T. H. Han, and S. O. Kim, Adv. Mater. 26, 40 (2014).CrossRefGoogle Scholar
  4. 4.
    W. J. Lee, U. N. Maiti, J. M. Lee, J. W. Lim, T. H. Han, and S. O. Kim, Chem. Commun., 50, 6818 (2014).CrossRefGoogle Scholar
  5. 5.
    Y. Wen, C. Huang, L. Wang, and D. H-Jurcakova, Chin. Sci. Bull. 59, 2102 (2014).CrossRefGoogle Scholar
  6. 6.
    X. Han, M. R. Funk, F. Shen, Y. C. Chen, Y. Li, C. J. Campbell, J. Dai, X. Yang, J. W. Kim, Y. Liao, J. W. Cornell, V. barone, Z. Chen, Y. Lin, and L. Hu, ACS Nano, 8, 8255 (2014).CrossRefGoogle Scholar
  7. 7.
    B. G. Choi, S. J. Chang, H. W. Kang, C. P. Park, H. J. Kim, W. H. Hong, S. Lee, and Y. S. Huh, Nanoscale, 4, 4983 (2012).CrossRefGoogle Scholar
  8. 8.
    W. Liu, X. Yan, J. Chen, Y. Feng, and Q. Xue, Nanoscale, 5, 6053 (2013).CrossRefGoogle Scholar
  9. 9.
    X. Yang, J. Zhu, L. Qiu, and D. Li, Adv. Mater. 23, 2833 (2011).CrossRefGoogle Scholar
  10. 10.
    B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, and Y. S. Huh, ACS Nano 6, 4020 (2012).CrossRefGoogle Scholar
  11. 11.
    D. P. Dubal, J. G. Kim, Y. Kim, R. Holze, C. D. Lokhande, and W. B. Kim, Energy Technology 2, 325 (2014).CrossRefGoogle Scholar
  12. 12.
    R. C. Silva, A. M. Gomez, H. I. Kim, H. K. Jang, F. Tristan, S. V. Diaz, L. P. Rajukumar, A. L. Elías, N. P. Lopez, J. Suhr, M. Endo, and M. Terrones, ACS Nano 8, 5959 (2014).CrossRefGoogle Scholar
  13. 13.
    T. Huang, B. Zheng, L. Kou, K. Gopalsamy, Z. Xu, C. Gao, Y. Meng, and Z. Wei, Rsc Adv. 3, 23957 (2013).CrossRefGoogle Scholar
  14. 14.
    Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, and L. Qu, Adv. Mater. 25, 2326 (2013).CrossRefGoogle Scholar
  15. 15.
    Y. Hu, H. Cheng, F. Zhao, N. Chen, L. Jiang, Z. Feng, and L. Qu, Nanoscale 6, 6448 (2014).CrossRefGoogle Scholar
  16. 16.
    Y. Liang, Z. Wang, J. Huang, H. Cheng, F. Zhao, Y. Hu, L. Jiang, and L. Qu, J. Mater. Chem. A 3, 2547 (2015).CrossRefGoogle Scholar
  17. 17.
    X. Ding, Y. Zhao, C. Hu, Y. Hu, Z. Dong, N. Chen, Z. Zhang, and L. Qu, J. Mater. Chem. A 2, 12355 (2014).CrossRefGoogle Scholar
  18. 18.
    K. Gopalsamy, Z. Xu, B. Zheng, T. Huang, L. Kou, X. Zhao, and C. Gao, Nanoscale 6, 8595 (2014).CrossRefGoogle Scholar
  19. 19.
    C. Wang, D. Li, C. O. Too, and G. G. Wallace, Chem. Matter. 21, 2604 (2009).CrossRefGoogle Scholar
  20. 20.
    Y. Wang, J. Chen, J. Cao, Y. Liu, Y. Zhao, J. H. Ouyang, and D. Jia, J. Power Sources 271, 269 (2014).CrossRefGoogle Scholar
  21. 21.
    Y.-Y. Peng, Y.-M. Liu, J.-K. Chang, C.-H. Wu, M.-D. Ger, N.-W. Pu, and C.-L. Chang, Carbon 81, 347 (2015).CrossRefGoogle Scholar
  22. 22.
    J. Zang, C. Cao, Y. Feng, J. Liu, and X. Zhao, Scientific Reports. 4, 6492 (2014).CrossRefGoogle Scholar
  23. 23.
    Z.-D. Huang, B. Zhang, S.-W. Oh, Q.-B. Zheng, X.-Y. Lin, N. Yousefi, and J.-K. Kim, J. Mater. Chem. 22, 3591 (2012).CrossRefGoogle Scholar
  24. 24.
    J. Xie, X. Sun, N. Zhang, K. Xu, M. Zhou, and Y. Xie, Nano Energy 2, 65 (2013).CrossRefGoogle Scholar
  25. 25.
    G. S. Gund, D. P. Dubal, B. H. Patil, S. S. Shinde, and C. D. Lokhande, Electrochimica Acta 92, 205 (2013).CrossRefGoogle Scholar
  26. 26.
    L. Peng, X. Peng, B. Liu, C. Wu, Y. Xie, and G. Yu, Nano Lett. 13, 2151 (2013).CrossRefGoogle Scholar
  27. 27.
    C. Wu, X. Lu, L. Peng, K. Xu, X. Peng, J. Huang, G. Yu, and Y. Xie, Nat. Commun. 4, 2431 (2013).Google Scholar
  28. 28.
    J. Bao, X. Zhang, L. Bai, W. Bai, M. Zhao, J. Xie, M. Guan, J. Zhao, and Y. Xie, J. Mater. Chem. A 2, 10876 (2014).CrossRefGoogle Scholar
  29. 29.
    T. Lee, T. Yun, B. Park, B. Sharma, H.-K. Song, and B.-S. Kim, J. Mater. Chem. 22, 21092 (2012).CrossRefGoogle Scholar
  30. 30.
    Y. Xu, M. G. Schwab, A. J. Strudwick, I. Hennig, X. Feng, Z. Wu, and K. Müllen, Adv. Energy Mater. 3, 1035 (2013).CrossRefGoogle Scholar
  31. 31.
    Z. Wang, Y. Su, D.-W. Wang, F. Li, J. Du, and H.-M. Cheng, Adv. Energy Mater. 1, 917 (2011).CrossRefGoogle Scholar
  32. 32.
    C.-H. Yang, P.-L. Huang, X.-F. Luo, C.-H. Wang, C. Li, Y.-H. Wu, and J.-K. Chang, Chem. Sus. Chem. 8, 1779 (2015).CrossRefGoogle Scholar
  33. 33.
    Y. Xu, Z. Lin, X. Zhong, X. Huang, N. O. Weiss, Y. Huang, and X. Duan, Nat. Commun. 5, 4554 (2014).Google Scholar
  34. 34.
    Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, and X. Duan, ACS Nano 7, 4042 (2013).CrossRefGoogle Scholar
  35. 35.
    Y. Xu, G. Shi, and X. Duan, Acc. Chem. Res. 48, 1666 (2015).CrossRefGoogle Scholar
  36. 36.
    L. Xie, F. Su, L. Xie, X. Li, Z. Liu, Q. Kong, X. Guo, Y. Zhang, L. Wan, K. Li, C. Lv, and C. Chen, Chem. Sus Chem. DOI: 10.1002/cssc.201500355
  37. 37.
    U. N. Maiti, J. Lim, K. E. Lee, W. J. Lee, and S. O. Kim, Adv. Mater. 26, 615 (2014).CrossRefGoogle Scholar
  38. 38.
    Z.-S. Wu, Y. Sun, Y. Z. Tan, S. Yang, X. Feng, and K. Müllen, J. Am. Chem. Soc. 134, 19532 (2012).CrossRefGoogle Scholar
  39. 39.
    H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Chin, J. K. Kang, and J. W. Choi, Nano Lett. 11, 2472 (2011).CrossRefGoogle Scholar
  40. 40.
    Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, and K. Müllen, Adv. Mater. 24, 5130 (2012).CrossRefGoogle Scholar
  41. 41.
    S. Dao, X. Huang, Z. Ma, J. Wu, and S. Wang, Nanotechnology, 26, 045402 (2015).CrossRefGoogle Scholar
  42. 42.
    Y. Xu, Z. Lin, X. Huang, Y. Wang, Y. Huang, and X. Duan, Adv. Mater. 25, 5779 (2013).CrossRefGoogle Scholar
  43. 43.
    Q. Wu, Y. Sun, H. Bai, and G. Shi, Phys. Chem. Chem. Phys. 13, 11193 (2011).CrossRefGoogle Scholar
  44. 44.
    B. G. Choi, J. Hong, W. H. Hong, P. T. Hammond, and H. S. Park, ACS Nano 5, 7205 (2011).CrossRefGoogle Scholar
  45. 45.
    S. H. Lee, D. H. Lee, W. J. Lee, and S. O. Kim, Adv. Funct. Mater. 11, 1338 (2011).CrossRefGoogle Scholar
  46. 46.
    S. H. Lee, H. W. Kim, J. O. Hwang, W. J. Lee, J. Kwon, C. W. Bielawski, R. S. Ruoff, and S. O. Kim, Angew. Chem. Int. Ed. 49, 10084 (2010).CrossRefGoogle Scholar
  47. 47.
    T. H. Han, W. J. Lee, D. H. Lee, J. E. Kim, E. Y. Choi, and S. O. Kim, Adv. Mater. 22, 2060 (2010).CrossRefGoogle Scholar
  48. 48.
    J.-H. Sung, S.-J. Kim, and K.-H. Lee, J. Power Sources 124, 343 (2003).CrossRefGoogle Scholar
  49. 49.
    M. F. El-Kady and R. B. Kaner, Nat. Commun. 4, 1475 (2013).CrossRefGoogle Scholar
  50. 50.
    Z. S. Wu, K. Parvez, X. L. Feng, and K. Müllen, Nat. Commun. 4, 2487 (2013).Google Scholar
  51. 51.
    Z.-S. Wu, K. Parvez, X. Feng, and K. Mullen, J. Mater. Chem. A 2, 8288 (2014).CrossRefGoogle Scholar
  52. 52.
    J. Lin, Z. Peng, Y. Liu, R. Ye, E. L. Samuel, F. Ruiz-Zepeda, M. J. Yacaman, B. I. Yakobson, and M. J. Tour, Nat. Commun. 5, 5714 (2014).CrossRefGoogle Scholar
  53. 53.
    Z. Peng, J. Lin, R. Ye, E. L. G. Samuel, and J. M. Tour, ACS Appl. Mater. Interfaces 7, 3414 (2015).CrossRefGoogle Scholar
  54. 54.
    S. Liu, J. Xie, H. Li, Y. Wang, H. Y. Yang, T. Zhu, S. Zhang, G. Cao, and X. Zhao, J. Mater. Chem. A 2, 18125 (2014).CrossRefGoogle Scholar
  55. 55.
    Z. Peng, R. Ye, J. A. Mann, D. Zakhidov, Y. Li, P. R. Smalley, J. Lin, and J. M. Tour, ACS Nano 9, 5868 (2015).CrossRefGoogle Scholar
  56. 56.
    Z. S. Wu, K. Parvez, A. Winter, H. Vieker, X. Liu, S. Han, A. Turchanin, X. Feng, and K. Müllen, Adv. Mater. 26, 4552 (2014).CrossRefGoogle Scholar
  57. 57.
    M. Beidaghi and C. Wang, Adv. Funct. Mater. 22, 4501 (2012).CrossRefGoogle Scholar
  58. 58.
    J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R. H. Hauge, D. Natelson, and James M. Tour, Nano Lett. 13, 72 (2013).CrossRefGoogle Scholar
  59. 59.
    D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, and Y. Chen, Nature Nanotechnology 9, 555 (2014).CrossRefGoogle Scholar
  60. 60.
    M. Xue, F. Li, J. Zhu, H. Song, M. Zhang, and T. Cao, Adv. Funct. Mater. 22, 1284 (2012).CrossRefGoogle Scholar
  61. 61.
    I. N. Bkrey and A. A. Moniem, International Journal of Chemical, Nuclear, Materials and Metallurgical Engineering, 8, 893 (2014).Google Scholar
  62. 62.
    W. Liu, C. Lu, X. Wang, R. Y. Tay, and B. K. Tay, ACS Nano 9, 1528 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Materials Science & EngineeringKAISTDaejeonKorea

Personalised recommendations