Electronic Materials Letters

, Volume 12, Issue 2, pp 211–218 | Cite as

Atomic thin titania nanosheet-coupled reduced graphene oxide 2D heterostructures for enhanced photocatalytic activity and fast lithium storage

  • Dong Jun Li
  • Zhegang Huang
  • Tae Hoon Hwang
  • Rekha Narayan
  • Jang Wook Choi
  • Sang Ouk Kim


Realizing practical high performance materials and devices using the properties of 2D materials is of key research interest in the materials science field. In particular, building well-defined heterostructures using more than two different 2D components in a rational way is highly desirable. In this paper, a 2D heterostructure consisting of atomic thin titania nanosheets densely grown on reduced graphene oxide surface is successfully prepared through incorporating polymer functionalized graphene oxide into the novel TiO2 nanosheets synthesis scheme. As a result of the synergistic combination of a highly accessible surface area and abundant interface, which can modulate the physicochemical properties, the resultant heterostructure can be used in high efficiency visible light photocatalysis as well as fast energy storage with a long lifecycle.


titania nanosheets reduced graphene oxide heterostructure photocatalysis lithium battery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13391_2015_5379_MOESM1_ESM.pdf (6.4 mb)
Supplementary material, approximately 6.37 MB.


  1. 1.
    S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45, 1558 (2007).CrossRefGoogle Scholar
  2. 2.
    Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, Nature 468, 549 (2010).CrossRefGoogle Scholar
  3. 3.
    U. N. Maiti, W. J. Lee, J. M. Lee, Y. T. Oh, J. Y. Kim, J. E. Kim, J. W. Shim, T. H. Han, and S. O. Kim, Adv. Mater. 26, 40 (2014).CrossRefGoogle Scholar
  4. 4.
    K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. USA 102, 10451 (2005).CrossRefGoogle Scholar
  5. 5.
    V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, Science 340, 1226419 (2013).CrossRefGoogle Scholar
  6. 6.
    M. Osada and T. Sasaki, Adv. Mater. 24, 210 (2012).CrossRefGoogle Scholar
  7. 7.
    A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).CrossRefGoogle Scholar
  8. 8.
    Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).CrossRefGoogle Scholar
  9. 9.
    H. Wang and H. Dai, Chem. Soc. Rev. 42, 3088 (2013).CrossRefGoogle Scholar
  10. 10.
    X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, Nat. Nanotechnol. 9, 1024 (2014).CrossRefGoogle Scholar
  11. 11.
    Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, Nat. Mater. 13, 1135 (2014).CrossRefGoogle Scholar
  12. 12.
    J. Zhang, Z. Zhu, Y. Tang, K. Müllen, and X. Feng, Adv. Mater. 26, 734 (2013).CrossRefGoogle Scholar
  13. 13.
    B. O’Regan and M. Grätzel, Nature 353, 737 (1991).CrossRefGoogle Scholar
  14. 14.
    X. Chen and S. S. Mao, Chem. Rev. 107, 2891 (2007).CrossRefGoogle Scholar
  15. 15.
    Z. Zhang and J. T. Yates, Jr., Chem. Rev. 112, 5520 (2012).CrossRefGoogle Scholar
  16. 16.
    G. Liu, H. G. Yang, J. Pan, Y. Q. Yang, G. Q. Lu, and H.-M. Cheng, Chem. Rev. 114, 9559 (2014).CrossRefGoogle Scholar
  17. 17.
    H. Zhang and J. F. Banfield, Chem. Rev. 114, 9613 (2014).CrossRefGoogle Scholar
  18. 18.
    Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, and C. Li, Chem. Rev. 114, 9987 (2014).CrossRefGoogle Scholar
  19. 19.
    M. Wagemaker, A. P. M. Kentgens, and F. M. Mulder, Nature 418, 397 (2002).CrossRefGoogle Scholar
  20. 20.
    G. Armstrong, A. R. Armstrong, P. G. Bruce, P. Reale, and B. Scrosati, Adv. Mater. 18, 2597 (2006).CrossRefGoogle Scholar
  21. 21.
    J. S. Lee, K. H. You, and C. B. Park, Adv. Mater. 24, 1084 (2012).CrossRefGoogle Scholar
  22. 22.
    D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L. V. Saraf, J. Zhang, I. A. Aksay, and J. Liu, ACS Nano 3, 907 (2009).Google Scholar
  23. 23.
    X. Huang, X. Qi, F. Boey, and H. Zhang, Chem. Soc. Rev. 41, 666 (2012).CrossRefGoogle Scholar
  24. 24.
    W. Li, F. Wang, S. Feng, J. Wang, Z. Sun, B. Li, Y. Li, J. Yang, A. A. Elzatahry, Y. Xia, and D. Zhao, J. Am. Chem. Soc. 135, 18300 (2013).CrossRefGoogle Scholar
  25. 25.
    C. Jo, Y. Seo, K. Cho, J. Kim, H. S. Shin, M. Lee, J.-C. Kim, S. O. Kim, J. Y. Lee, H. Ihee, and R. Ryoo, Angew. Chem. Int. Ed. 53, 5117 (2014).Google Scholar
  26. 26.
    H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, and G. Q. Lu, Nature 453, 638 (2008).CrossRefGoogle Scholar
  27. 27.
    Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, Nano Lett. 2, 717 (2002).CrossRefGoogle Scholar
  28. 28.
    H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon, Y. Lee, K. C. Roh, and K. Kang, Adv. Energy Mater. 3, 1500 (2013).CrossRefGoogle Scholar
  29. 29.
    M. Kruk and M. Jaroniec, Chem. Mater. 13, 3169 (2001).CrossRefGoogle Scholar
  30. 30.
    Y. Zhang, Z.-R. Tang, X. Fu, and Y.-J. Xu, ACS Nano 4, 7303 (2010).Google Scholar
  31. 31.
    K. Woan, G. Pyrgiotakis, and W. Sigmund, Adv. Mater. 21, 2233 (2009).CrossRefGoogle Scholar
  32. 32.
    H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, ACS Nano 4, 380 (2010).Google Scholar
  33. 33.
    W. J. Lee, J. M. Lee, S. T. Kochuveedu, T. H. Han, H. Y. Jeong, M. Park, J. M. Yun, J. Kwon, K. No, D. H. Kim, and S. O. Kim, ACS Nano 6, 935 (2012).Google Scholar
  34. 34.
    D. Deng, M. G. Kim, J. Y. Lee, and J. Cho, Energy Environ. Sci. 2, 818 (2009).CrossRefGoogle Scholar
  35. 35.
    Y. Ren, L. J. Hardwick, and P. G. Bruce, Angew. Chem. Int. Ed. 49, 2570 (2010).CrossRefGoogle Scholar
  36. 36.
    J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer, and X. W. Lou, J. Am. Chem. Soc. 132, 6124 (2010).CrossRefGoogle Scholar
  37. 37.
    C. Kim, N. S. Norberg, C. T. Alexander, R. Kostecki, and J. Cabana, Adv. Funct. Mater. 23, 1214 (2013).CrossRefGoogle Scholar
  38. 38.
    S. Yang, X. Feng, and K. Müllen, Adv. Mater. 23, 3575 (2011).CrossRefGoogle Scholar
  39. 39.
    X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, Nano Lett. 12, 1690 (2012).CrossRefGoogle Scholar
  40. 40.
    D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, and S. O. Kim, Nano Lett. 14, 1228 (2014).CrossRefGoogle Scholar
  41. 41.
    J.-Y. Shin, D. Samuelis, and J. Maier, Adv. Funct. Mater. 21, 3464 (2011).CrossRefGoogle Scholar
  42. 42.
    S. H. Lee, D. R. Dreyer, J. An, A. Velamakanni, R. D. Piner, S. Park, Y. Zhu, S. O. Kim, C. W. Bielawski, and R. S. Ruoff, Macromol. Rapid Commun. 31, 281 (2010).CrossRefGoogle Scholar
  43. 43.
    F. P. Drijfhout, M. W. Fraaije, H. Jongejan, W. J. van Berkel, and M. C. Franssen, Biotechnol. Bioeng. 59, 171 (1998).CrossRefGoogle Scholar
  44. 44.
    M. Al-Harthi, A. Sardashti, J. B. P. Soares, and L. C. Simon, Polymer 48, 1954 (2007).CrossRefGoogle Scholar
  45. 45.
    S.-H. Park, H.-K. Kim, K. C. Roh, and K.-B. Kim, Electron. Mater. Lett. 11, 288 (2015).CrossRefGoogle Scholar
  46. 46.
    M. C. Thirumoolam, B. Sivaramakrishnan, and M. Devarajan, Electron. Mater. Lett. 11, 416 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Dong Jun Li
    • 1
  • Zhegang Huang
    • 1
  • Tae Hoon Hwang
    • 2
  • Rekha Narayan
    • 1
  • Jang Wook Choi
    • 2
  • Sang Ouk Kim
    • 1
  1. 1.National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science & EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea
  2. 2.Graduate School of EEWS (WCU)Korea Advanced Institute of Science and TechnologyDaejeonKorea

Personalised recommendations