Abstract
In this paper we communicate the thermoelectric properties of carbon and nitrogen based metallic antiperovskites ANCa3 (A=Ge, Sn, Pb), BCFe3 (B=Al, Zn, Ga) and SnCD3 (D=Co and Fe) using the ab-initio calculations to explore efficient metallic thermoelectric materials. The consistency of the calculated results of SnCCo3 and SnCFe3 with the experimental results confirms the reliability of our theoretical calculations for the other investigated metallic antiperovskites. The results indicate that the thermopower of these materials can be enhanced by changing the chemical potential. The dimensionless figure of merit for the three nitrides approaches 0.96 at room temperature, which proves the usefulness of these materials in thermoelectric generators. Furthermore, the thermal conductivity is minimum at room temperature for chemical potential values between -0.25 μ(eV) and 0.25 μ(eV), and provides the maximum values of dimensionless figure of merit in this range. The striking feature of these studies is identifying a metallic compound, SnNCa3, with the highest value of Seebeck coefficient at room temperature out of all metals. The results anticipate that these materials could be efficient in thermoelectric generators; however, this needs experimental verification.
Similar content being viewed by others
References
S. V. Ovsyannikov and V. V. Shchennikov, Chem. Mater. 22, 635 (2010).
L. E. Bell, Science 321, 1457 (2008).
X. Qu, W. Wang, W. Liu, Z. Yang, X. Duan, and D. Jia, Mater. Chem. Phys. 129, 331 (2011).
O. Rabin, Y. M. Lin, and M. S. Dresselhaus, Appl. Phys. Lett. 79, 81 (2001).
T. Takeuchi, Mater. Trans. 50, 2359 (2009).
K. Uemura and I. Nishida, Thermoelectric Semiconductor, Their Applications, p. 1, Nikkan Kogyo Shinbun Press, Tokyo, Japan (1988).
A. L. Ivanovskii, Russ. Chem. Rev. 64, 499 (1995).
A. Bouhemadou, R. Khenata, M. Chegaar, and S. Maabed, Phys. Lett. A 371, 337 (2007).
V. Kanchana and S. Ram, Intermetallics 23, 39 (2012).
H. A. R. Aliabad, M. Ghazanfari, I. Ahmad, and M. A. Saeed, Comput. Mater. Sci. 65, 509 (2012).
N. P. Blake, S. Latturner, J. D. Bryan, G. D. Stucky, and H. Metiu, J. Chem. Phys. 115, 8060 (2001).
H. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G. P. Meisner, and C. Uher, Appl. Phys. Lett. 79, 4165 (2001).
T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Science 297, 2229 (2002).
I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, Appl. Phys. Lett. 78, 3627 (2001).
W. Shin, N. Murayama, K. Ikeda, and S. Sago, J. Power Sources 103, 80 (2001).
I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).
A. Maignan, L. B. Wang, S. Hebert, D. Pelloquin, and B. Raveau, Chem. Mater. 14, 1231 (2002).
T. He, Q. Huang, A. P. Ramirez, Y. Wang, K. A. Regan, N. Rogado, M. A. Hayward, M. K. Haas, J. S. Slusky, K. Inumara, H. W. Zandbergen, N. P. Ong, and R. J. Cava, Nature 411, 54 (2001).
B. S. Wang, P. Tong, Y. P. Sun, X. B. Zhu, Z. R. Yang, W. H. Song, and J. M. Dai, Appl. Phys. Lett. 97, 042508 (2010).
K. Kamishima, T. Goto, H. Nakagawa, N. Miura, M. Ohashi, N. Mori, T. Sasaki, and T. Kanomata, Phys. Rev. B 63, 024426 (2000).
Y. B. Li, W. F. Li, W. J. Feng, Y. Q. Zhang, and Z. D. Zhang, Phys. Rev. B 72, 024411 (2005).
B. S. Wang, P. Tong, Y. P. Sun, L. J. Li, W. Tang, W. J. Lu, X. B. Zhu, Z. R. Yang, and W. H. Song, Appl. Phys. Lett. 95, 222509 (2009).
B. S. Wang, J. C. Lin, P. Tong, L. Zhang, W. J. Lu, X. B. Zhu, Z. R. Yang, W. H. Song, J. M. Dai, and Y. P. Sun, J. Appl. Phys. 108, 093925 (2010).
K. Takenaka, K. Asano, M. Misawa, and H. Takagi, Appl. Phys. Lett. 92, 011927 (2008).
R. J. Huang, L. F. Li, F. S. Cai, X. D. Xu, and L. H. Qian, Appl. Phys. Lett. 93, 081902 (2008).
K. Asano, K. Koyama, and K. Takenaka, Appl. Phys. Lett. 92, 161909 (2008).
E. O. Chi, W. S. Kim, and N. H. Hur, Solid State Commun. 120, 307 (2001).
K. Takenaka, A. Ozawa, T. Shibayama, N. Kaneko, T. Oe, and C. Urano, Appl. Phys. Lett. 98, 022103 (2011).
S. Lin, B. S. Wang, J. C. Lin, Y. N. Huang, W. J. Lu, B. C. Zhao, P. Tong, W.H. Song, and Y. P. Sun, Appl. Phys. Lett. 101, 011908 (2012).
M. Bilal, I. Ahmad, H. A. Rahnamaye-Aliabad, and S. Jalali-Asadabadi, Comput. Mater. Sci. 85, 310 (2014).
S. Lin, B. S. Wang, J. C. Lin, Y. N. Huang, X. B. Hu, B. C. Zhao, W. J. Lu, P. Tong, W. H. Song, and Y. P. Sun, J. Appl. Phys. 110, 083914 (2011).
T. Maruoka and R. O. Suzuki, Mater. Trans. 47, 1422 (2006).
P. Tong, Y. P. Sun, X. B. Zhu, and W. H. Song, Phys. Rev. B 73, 245106 (2006).
S. Lin, P. Tong, B. S. Wang, Y. N. Huang, D. F. Shao, W. J. Lu, and Y. P. Sun, J. Solid State Chem. 209, 127 (2014).
M. Bilal, B. Khan, H. A. Rahnamaye-Aliabad, M. Maqbool, S. Jalali-Asadabadi, and I. Ahmad, Comput. Phys. Commun. 185, 1394 (2014).
S. Lin, P. Tong, B. Wang, J. Lin, Y. Huang, and Y. Sun, Inorg. Chem. 53, 3709 (2014).
G. D. Mahan, In Solid State Phys. Ed.; F. Seitz, H. Ehrenreich, and F. Spaepen, p. 51, Academic Press, New York, USA (1997).
T. M. Tritt and M. A. Subramanian, MRS. Bull. 31, 188 (2006).
O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).
P. Blaha, K. Schwarz, G. Madsen, D. Kvasicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Technical University of Vienna, Vienna, Austria (2001).
F. Grandjean and A. Gerard, J. Phys. F: Metal Phys. 6, 451 (1976).
M. Y. Chern, D. A. Vennos, and F. DiSalvo, J. Solid State Chem. 96, 415 (1992).
J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
G. K. H. Madsen and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006).
J. Y. Kim, M. W. Oh, S. Lee, Y. C. Cho, J. H. Yoon, G. W. Lee, C. R. Cho, C. H. Park, and S. Y. Jeong, Scientific Reports 4, 5450 (2014).
T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo, Phys. Rev. B 68, 125210 (2003).
B. Xu, J. Liang, X. Li, J. F. Sun, and L. Yi, Eur. Phys. J. B 79, 275 (2011).
G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
S. N. Rashkeev and W. R. L. Lambrecht, Phys. Rev. B 63, 165212 (2001).
T. M. Tritt, Thermal Conductivity: Theory, Properties, and Applications, p. 75, Kluwer Academic/PLENUM publishers, New York, USA (2004).
C. Kittel, Introduction to Solid State Physics Eighth Edition, p. 156, John Wiley & Sons, Hoboken, USA (2004).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bilal, M., Ahmad, I., Asadabadi, S.J. et al. Thermoelectric properties of metallic antiperovskites AXD3 (A=Ge, Sn, Pb, Al, Zn, Ga; X=N, C; D=Ca, Fe, Co). Electron. Mater. Lett. 11, 466–480 (2015). https://doi.org/10.1007/s13391-015-4425-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13391-015-4425-2