Skip to main content

Advertisement

Log in

Thermoelectric properties of metallic antiperovskites AXD3 (A=Ge, Sn, Pb, Al, Zn, Ga; X=N, C; D=Ca, Fe, Co)

  • Original Article
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this paper we communicate the thermoelectric properties of carbon and nitrogen based metallic antiperovskites ANCa3 (A=Ge, Sn, Pb), BCFe3 (B=Al, Zn, Ga) and SnCD3 (D=Co and Fe) using the ab-initio calculations to explore efficient metallic thermoelectric materials. The consistency of the calculated results of SnCCo3 and SnCFe3 with the experimental results confirms the reliability of our theoretical calculations for the other investigated metallic antiperovskites. The results indicate that the thermopower of these materials can be enhanced by changing the chemical potential. The dimensionless figure of merit for the three nitrides approaches 0.96 at room temperature, which proves the usefulness of these materials in thermoelectric generators. Furthermore, the thermal conductivity is minimum at room temperature for chemical potential values between -0.25 μ(eV) and 0.25 μ(eV), and provides the maximum values of dimensionless figure of merit in this range. The striking feature of these studies is identifying a metallic compound, SnNCa3, with the highest value of Seebeck coefficient at room temperature out of all metals. The results anticipate that these materials could be efficient in thermoelectric generators; however, this needs experimental verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Ovsyannikov and V. V. Shchennikov, Chem. Mater. 22, 635 (2010).

    Article  Google Scholar 

  2. L. E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  3. X. Qu, W. Wang, W. Liu, Z. Yang, X. Duan, and D. Jia, Mater. Chem. Phys. 129, 331 (2011).

    Article  Google Scholar 

  4. O. Rabin, Y. M. Lin, and M. S. Dresselhaus, Appl. Phys. Lett. 79, 81 (2001).

    Article  Google Scholar 

  5. T. Takeuchi, Mater. Trans. 50, 2359 (2009).

    Article  Google Scholar 

  6. K. Uemura and I. Nishida, Thermoelectric Semiconductor, Their Applications, p. 1, Nikkan Kogyo Shinbun Press, Tokyo, Japan (1988).

  7. A. L. Ivanovskii, Russ. Chem. Rev. 64, 499 (1995).

    Google Scholar 

  8. A. Bouhemadou, R. Khenata, M. Chegaar, and S. Maabed, Phys. Lett. A 371, 337 (2007).

    Article  Google Scholar 

  9. V. Kanchana and S. Ram, Intermetallics 23, 39 (2012).

    Article  Google Scholar 

  10. H. A. R. Aliabad, M. Ghazanfari, I. Ahmad, and M. A. Saeed, Comput. Mater. Sci. 65, 509 (2012).

    Article  Google Scholar 

  11. N. P. Blake, S. Latturner, J. D. Bryan, G. D. Stucky, and H. Metiu, J. Chem. Phys. 115, 8060 (2001).

    Article  Google Scholar 

  12. H. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G. P. Meisner, and C. Uher, Appl. Phys. Lett. 79, 4165 (2001).

    Article  Google Scholar 

  13. T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Science 297, 2229 (2002).

    Article  Google Scholar 

  14. I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, Appl. Phys. Lett. 78, 3627 (2001).

    Article  Google Scholar 

  15. W. Shin, N. Murayama, K. Ikeda, and S. Sago, J. Power Sources 103, 80 (2001).

    Article  Google Scholar 

  16. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).

  17. A. Maignan, L. B. Wang, S. Hebert, D. Pelloquin, and B. Raveau, Chem. Mater. 14, 1231 (2002).

    Article  Google Scholar 

  18. T. He, Q. Huang, A. P. Ramirez, Y. Wang, K. A. Regan, N. Rogado, M. A. Hayward, M. K. Haas, J. S. Slusky, K. Inumara, H. W. Zandbergen, N. P. Ong, and R. J. Cava, Nature 411, 54 (2001).

    Article  Google Scholar 

  19. B. S. Wang, P. Tong, Y. P. Sun, X. B. Zhu, Z. R. Yang, W. H. Song, and J. M. Dai, Appl. Phys. Lett. 97, 042508 (2010).

    Article  Google Scholar 

  20. K. Kamishima, T. Goto, H. Nakagawa, N. Miura, M. Ohashi, N. Mori, T. Sasaki, and T. Kanomata, Phys. Rev. B 63, 024426 (2000).

    Article  Google Scholar 

  21. Y. B. Li, W. F. Li, W. J. Feng, Y. Q. Zhang, and Z. D. Zhang, Phys. Rev. B 72, 024411 (2005).

    Article  Google Scholar 

  22. B. S. Wang, P. Tong, Y. P. Sun, L. J. Li, W. Tang, W. J. Lu, X. B. Zhu, Z. R. Yang, and W. H. Song, Appl. Phys. Lett. 95, 222509 (2009).

    Article  Google Scholar 

  23. B. S. Wang, J. C. Lin, P. Tong, L. Zhang, W. J. Lu, X. B. Zhu, Z. R. Yang, W. H. Song, J. M. Dai, and Y. P. Sun, J. Appl. Phys. 108, 093925 (2010).

    Article  Google Scholar 

  24. K. Takenaka, K. Asano, M. Misawa, and H. Takagi, Appl. Phys. Lett. 92, 011927 (2008).

    Article  Google Scholar 

  25. R. J. Huang, L. F. Li, F. S. Cai, X. D. Xu, and L. H. Qian, Appl. Phys. Lett. 93, 081902 (2008).

    Article  Google Scholar 

  26. K. Asano, K. Koyama, and K. Takenaka, Appl. Phys. Lett. 92, 161909 (2008).

    Article  Google Scholar 

  27. E. O. Chi, W. S. Kim, and N. H. Hur, Solid State Commun. 120, 307 (2001).

    Article  Google Scholar 

  28. K. Takenaka, A. Ozawa, T. Shibayama, N. Kaneko, T. Oe, and C. Urano, Appl. Phys. Lett. 98, 022103 (2011).

    Article  Google Scholar 

  29. S. Lin, B. S. Wang, J. C. Lin, Y. N. Huang, W. J. Lu, B. C. Zhao, P. Tong, W.H. Song, and Y. P. Sun, Appl. Phys. Lett. 101, 011908 (2012).

    Article  Google Scholar 

  30. M. Bilal, I. Ahmad, H. A. Rahnamaye-Aliabad, and S. Jalali-Asadabadi, Comput. Mater. Sci. 85, 310 (2014).

    Article  Google Scholar 

  31. S. Lin, B. S. Wang, J. C. Lin, Y. N. Huang, X. B. Hu, B. C. Zhao, W. J. Lu, P. Tong, W. H. Song, and Y. P. Sun, J. Appl. Phys. 110, 083914 (2011).

    Article  Google Scholar 

  32. T. Maruoka and R. O. Suzuki, Mater. Trans. 47, 1422 (2006).

    Article  Google Scholar 

  33. P. Tong, Y. P. Sun, X. B. Zhu, and W. H. Song, Phys. Rev. B 73, 245106 (2006).

    Article  Google Scholar 

  34. S. Lin, P. Tong, B. S. Wang, Y. N. Huang, D. F. Shao, W. J. Lu, and Y. P. Sun, J. Solid State Chem. 209, 127 (2014).

    Article  Google Scholar 

  35. M. Bilal, B. Khan, H. A. Rahnamaye-Aliabad, M. Maqbool, S. Jalali-Asadabadi, and I. Ahmad, Comput. Phys. Commun. 185, 1394 (2014).

    Article  Google Scholar 

  36. S. Lin, P. Tong, B. Wang, J. Lin, Y. Huang, and Y. Sun, Inorg. Chem. 53, 3709 (2014).

    Article  Google Scholar 

  37. G. D. Mahan, In Solid State Phys. Ed.; F. Seitz, H. Ehrenreich, and F. Spaepen, p. 51, Academic Press, New York, USA (1997).

  38. T. M. Tritt and M. A. Subramanian, MRS. Bull. 31, 188 (2006).

    Article  Google Scholar 

  39. O. K. Andersen, Phys. Rev. B 12, 3060 (1975).

    Article  Google Scholar 

  40. W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).

  41. P. Blaha, K. Schwarz, G. Madsen, D. Kvasicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Technical University of Vienna, Vienna, Austria (2001).

    Google Scholar 

  42. F. Grandjean and A. Gerard, J. Phys. F: Metal Phys. 6, 451 (1976).

    Article  Google Scholar 

  43. M. Y. Chern, D. A. Vennos, and F. DiSalvo, J. Solid State Chem. 96, 415 (1992).

    Article  Google Scholar 

  44. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  45. G. K. H. Madsen and D. J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  46. J. Y. Kim, M. W. Oh, S. Lee, Y. C. Cho, J. H. Yoon, G. W. Lee, C. R. Cho, C. H. Park, and S. Y. Jeong, Scientific Reports 4, 5450 (2014).

    Google Scholar 

  47. T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo, Phys. Rev. B 68, 125210 (2003).

    Article  Google Scholar 

  48. B. Xu, J. Liang, X. Li, J. F. Sun, and L. Yi, Eur. Phys. J. B 79, 275 (2011).

    Article  Google Scholar 

  49. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

    Article  Google Scholar 

  50. S. N. Rashkeev and W. R. L. Lambrecht, Phys. Rev. B 63, 165212 (2001).

    Article  Google Scholar 

  51. T. M. Tritt, Thermal Conductivity: Theory, Properties, and Applications, p. 75, Kluwer Academic/PLENUM publishers, New York, USA (2004).

    Book  Google Scholar 

  52. C. Kittel, Introduction to Solid State Physics Eighth Edition, p. 156, John Wiley & Sons, Hoboken, USA (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, M., Ahmad, I., Asadabadi, S.J. et al. Thermoelectric properties of metallic antiperovskites AXD3 (A=Ge, Sn, Pb, Al, Zn, Ga; X=N, C; D=Ca, Fe, Co). Electron. Mater. Lett. 11, 466–480 (2015). https://doi.org/10.1007/s13391-015-4425-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4425-2

Keywords

Navigation