Skip to main content
Log in

Influence of gas flow on structural and optical properties of ZnO submicron particles grown on Au nano thin films by vapor phase transport

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

ZnO submicron particles were grown on Au-catalyzed Si substrates using a vapor phase transport (VPT) growth process under different mixture gas ratios at a growth temperature of 900°C. The structural and optical properties of the ZnO submicron particles were investigated using field-emission scanning electron microscopy (FE-SEM), x-ray diffraction (XRD), and photoluminescence (PL). The ZnO submicron particles were clustered for the O2/Ar mixture gas ratios (%) higher than 10%, which was largely determined by the ambient gas. In particular, for an O2/Ar mixture gas ratios of 30%, ZnO submicron particles with diameters between 125–500 nm were observed; in addition, the narrowest XRD full width at half maximum (FWHM) values and PL spectra with 0.121° and 92 meV were reported. The structural and optical properties of the ZnO submicron particles improved as the O2/Ar mixture gas ratio was increased, as observed from the XRD and PL spectra results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Kim, M. S. Kim, G. Nam, and J.-Y. Leem, Electron. Mater. Lett. 8, 445 (2012).

    Article  Google Scholar 

  2. D. C. Look, Mater. Sci. Eng. B 80, 383 (2001).

    Article  Google Scholar 

  3. H. Guo, J. Zhou, and Z. Lin, Electrochem. Commun. 10, 146 (2008).

    Article  Google Scholar 

  4. S. P. Chang, R. W. Chuang, S. J. Chang, Y. Z. Chiou, and C. Y. Lu, Thin Solid Films 517, 5054 (2009).

    Article  Google Scholar 

  5. Y. F. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).

    Article  Google Scholar 

  6. Z. Zhang, S. J. Wang, T. Yu, and T. J. Wu, Phys. Chem. C 111, 17500 (2007).

    Article  Google Scholar 

  7. S. Kim, S.-H. Lee, J. S. Kim, J. S. Kim, D. Y. Kim, S.-O. Kim, and J.-Y. Leem, Electron. Mater. Lett. 9, 509 (2013).

    Article  Google Scholar 

  8. X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, Appl. Phys. Lett. 82, 4806 (2003).

    Article  Google Scholar 

  9. Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, Appl. Phys. Lett. 83, 1689 (2003).

    Article  Google Scholar 

  10. W. L. Park, G. C. Yi, M. Kim, and S. J. Pennycook, Adv. Mater. 14, 1841 (2002).

    Article  Google Scholar 

  11. M. S. Kim, K. G. Yim, D. Y. Lee, J. S. Kim, J. S. Kim, and J.-Y. Leem, J. Kor. Phys. Soc. 58, 821 (2011).

    Article  Google Scholar 

  12. G. Nam, S. Kim, M. S. Kim, K. G. Yim, D. Y. Kim, S.-O. Kim, and J.-Y. Leem, J. Korea Phys. Soc. 59, 129 (2011).

    Article  Google Scholar 

  13. Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Chem. Phys. Lett. 396, 21 (2004).

    Article  Google Scholar 

  14. M. Godlewski, E. Guziewicz, G. Luka, T. Krajewski, M. Lukasiewicz, L. Wachnicki, A. Wachnicka, K. Kopalko, A. Sarem, and B. Dalati, Thin Solid Films 518, 1145 (2009).

    Article  Google Scholar 

  15. K. B. Sundaram and A. Khan, Thin Solid Films 295, 87 (1997).

    Article  Google Scholar 

  16. M. Y. Cho, M. S. Kim, H. Y. Choi, S. M. Jeon, G. S. Kim, D. Y. Kim, K. G. Yim, D.-Y. Lee, J. S Kim, J. S Kim, J. I. Lee, and J.-Y. Leem, J. Kor. Phys. Soc. 56, 1833 (2010).

    Article  Google Scholar 

  17. S. Roy and S. Basu, Bull. Mater. Sci. 25, 513 (2002).

    Article  Google Scholar 

  18. J. G. Lu, Z. Z. Ye, J. Y. Huang, L. P. Zhu, B. H. Zhao, Z. L. Wang, and S. Fujita, Appl. Phys. Lett. 88, 063110 (2006).

    Article  Google Scholar 

  19. A. Bakin, A. C. Mofor, A. El-Shaer, and A. Waag, Superlattice Microst. 42, 33 (2007).

    Article  Google Scholar 

  20. M. S. Kim, K. G. Yim, H. Y. Choi, M. Y. Cho, G. S. Kim, S. M. Jeon, D.-Y. Lee, J. S. Kim, J. S. Kim, J.-S. Son, J. I. Lee, and J.-Y. Leem, J. Cryst. Growth 326, 195 (2011).

    Article  Google Scholar 

  21. E. M. Wong, J. E. Bonevich, and P. C. Searson, J. Phys. Chem. B 102, 7770 (1998).

    Article  Google Scholar 

  22. H. M. Lim and C. S. Han, Bull. Korean Chem. Soc. 20, 1 (1999).

    Google Scholar 

  23. R. Vijaya Kumar, Y. Diamant, and A. Gedanken, Chem. Mater. 12, 2301 (2000).

    Article  Google Scholar 

  24. C. L. Carnes and K. J. Klabunde, Langmuir 16, 3764 (2000).

    Article  Google Scholar 

  25. T. F. Young, J. F. Chang, and H. Y. Ueng, Thin Solid Films 322, 319 (1998).

    Article  Google Scholar 

  26. J. F. Chang, T. F. Young, Y. L. Yang, H. Y. Ueng, and T. C. Chang, Mater. Chem. Phys. 83, 199 (2004).

    Article  Google Scholar 

  27. J. Grabowska, K. K. Nanda, E. McGlynn, J.-P. Mosnier, and M. O. Henry, Surf. Coat. Technol. 200, 1093 (2005).

    Article  Google Scholar 

  28. H. Y. Dang, J. Wang, and S. S. Fan, Nanotechnol. 14, 738 (2003).

    Article  Google Scholar 

  29. C. Li, G. Fang, Y. Ren, Q. Fu, and X. Zhao, J. Nanosci. Nanotechnol. 6, 1467 (2006).

    Article  Google Scholar 

  30. S. Q. Hu, C.-M. Hou, H.-M. Yuan, B. Hu, and S.-H. Feng, Chem. Res. Chinese U. 26, 675 (2010).

    Google Scholar 

  31. P. C. Chang, Z. Y. Fan, D. W. Wang, W. Y. Tseng, W. A. Chiou, J. Hong, and J. G. Lu, Chem. Mater. 16, 5133 (2004).

    Article  Google Scholar 

  32. H. J. Fan, R. Scholz, M. Zacharias, U. Gösele, F. Bertram, D. Forster, and J. Christen, Appl. Phys. Lett. 86, 023113 (2005).

    Article  Google Scholar 

  33. M. S. Kim, T. H. Kim, D. Y. Kim, G. S. Kim, H. Y. Choi, M. Y. Cho, S. M. Jeon, J. S. Kim, J. S. Kim, D. Y. Lee, J.-S. Son, J. I. Lee, J. H. Kim, E. Kim, D.-W. Hwang, and J.-Y. Leem, J. Cryst. Growth 311, 3568 (2009).

    Article  Google Scholar 

  34. R. Yousefi and A. K. Zak, Mat. Sci. Semicon. Proc. 14, 170 (2011).

    Article  Google Scholar 

  35. C. Wang, P. Zhan, J. Yue, Y. Zhang, and L. Zheng, Physica B 403, 2235 (2008).

    Article  Google Scholar 

  36. C. Li, X. C. Li, P. X. Yan, E. M. Chong, Y. Liu, G. H. Yue, and X. Y. Fan, Appl. Surf. Sci. 253, 4000 (2007).

    Article  Google Scholar 

  37. D. H. Zhang, Z. Y. Xue, and Q. P. Wang, J. Phys. D: Appl. Phys. 35, 2837 (2002).

    Article  Google Scholar 

  38. B. J. Jin, H. S. Woo, S. Im, S. H. Bae, and S. Y. Lee, Appl. Surf. Sci. 169, 521 (2001).

    Article  Google Scholar 

  39. M. J. G. Henseler, W. C. T. Lee, P. Miller, S. M. Durbin, and R. J. Reeves, J. Cryst. Growth 287, 48 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Young Leem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Nam, G. & Leem, JY. Influence of gas flow on structural and optical properties of ZnO submicron particles grown on Au nano thin films by vapor phase transport. Electron. Mater. Lett. 10, 915–920 (2014). https://doi.org/10.1007/s13391-014-4004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4004-y

Keywords

Navigation