Skip to main content
Log in

Effect of milling on properties and consolidation of TiO2 by high-frequency induction heated sintering

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Commercial TiO2 powders were high-energy ball milled for various durations and consolidated using highfrequency induction heated sintering (HFIHS). The effect of milling on the sintering behavior, crystallite size and mechanical properties of TiO2 powders were evaluated. A nanostructured dense TiO2 compact with a relative density of up to 98% was readily obtained within 1 min. The ball milling effectively refined the crystallite structure of TiO2 powders and facilitated the subsequent densification. The sinter-onset temperature was noticeably reduced by the prior milling for 10 h. Accordingly, the relative density of TiO2 compact increased as the milling time increases. Furthermore, the microhardness and fracture toughness of sintered TiO2 increased as the density increases. It is clearly demonstrated that a quick densification of nano-structured TiO2 bulk materials to near theoretical density could be obtained by the combination of HFIHS and the preparatory high-energy ball milling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Iketani, R. D. Sun, M. Toki, K. Hirota, and O. Yamaguchi, J. Phys. Chem. Solids 64 507 (2003).

    Article  CAS  Google Scholar 

  2. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, J. Am. Ceram. Soc. 80 3157 (1997).

    Article  Google Scholar 

  3. C. Garzella, E. Comini, E. Bontempi, L. E. Depero, C. Frigeri, and G. Sberveglieri, Sens. Actuators B 83 230 (2002).

    Article  Google Scholar 

  4. D. J. Kim, S. H. Hahn, S. H. Oh, and E. J. Kim, Mater. Lett. 57 355 (2002).

    Article  Google Scholar 

  5. D. Qin, W. Chang, J. Zhou, and Y. Chen, Thermochim. Acta 236 205 (1994).

    Article  CAS  Google Scholar 

  6. H. Gleiter, Nanostructured Materials 6 3 (1995).

    Article  CAS  Google Scholar 

  7. J. R. Yoon, D. J. Choi, K. H. Lee, J. Y. Lee, and Y. H. Kim, Electron. Mater. Lett. 4 167 (2008).

    CAS  Google Scholar 

  8. J. Karch, R. Birringer, and H. Gleiter, Nature 330 556 (1987).

    Article  CAS  Google Scholar 

  9. A. M. George, J. Iniguez, and L. Bellaiche, Nature 413 54 (2001).

    Article  CAS  Google Scholar 

  10. T. Prakash, Electron. Mater. Lett. 8 231 (2012).

    Article  CAS  Google Scholar 

  11. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sensors and Actuators B: Chemical. 3 147 (1991).

    Article  Google Scholar 

  12. D. G. Lamas, A. Caneiro, D. Niebieskikwiat, R. D. Sanchez, D. Garcia, and B. Alascio, Journal of Magnetism and Magnetic Materials. 241 207 (2002).

    Article  CAS  Google Scholar 

  13. C. W. Nahm, C. J. Kim, Y. J. Park, B. J. Lee, and B. W. Park, Electron. Mater. Lett. 4 5 (2008).

    CAS  Google Scholar 

  14. E. S. Ahn, N. J. Gleason, A. Nakahira, and J. Y. Ying, Nano Lett. 1 149 (2001).

    Article  CAS  Google Scholar 

  15. A. Morell and A. Mermosin, Bull. Am. Ceram. Soc. 59 626 (1980).

    CAS  Google Scholar 

  16. D. J. Chen and M. J. Mayo, J. Am. Ceram. Soc. 79 906 (1996).

    Article  CAS  Google Scholar 

  17. D. J. Chen and M. J. Mayo, NanoStruct. Mater. 2 469 (1993).

    Article  CAS  Google Scholar 

  18. I. J. Shon, S. L. Du, I. Y. Ko, J. M. Doh, J. K. Yoon, and J. H. Park, Electron. Mater. Lett. 7 133 (2011).

    Article  CAS  Google Scholar 

  19. H.-S. Kang, I.-Y. Ko, J.-K. Yoon, J.-M. Doh, K.-T. Hong, and I.-J. Shon, Met. Mater. Int. 17 57 (2011).

    Article  CAS  Google Scholar 

  20. I.-J. Shon, H.-Y. Song, S.-W. Cho, W. B. Kim, and C.-Y. Suh, Korean J. Met. Mater. 50 39 (2012).

    CAS  Google Scholar 

  21. N. R. Park, I. Y. Ko, J. K. Yoon, J. M. Doh, and I. J. Shon, Met. Mater. Int. 17 233 (2011).

    Article  CAS  Google Scholar 

  22. S. L. Du, S. H. Cho, I. Y. Ko, J. M. Doh, J. K. Yoon, S. W. Park, and I. J. Shon, Korean J. Met. Mater. 49 231 (2011).

    Article  CAS  Google Scholar 

  23. C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, p. 207, Plenum Press, New York (1998).

    Google Scholar 

  24. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85 1921 (2002).

    Article  CAS  Google Scholar 

  25. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85 573 (2004).

    Article  CAS  Google Scholar 

  26. J. R. Friedman, J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics 12 589 (2004).

    Article  CAS  Google Scholar 

  27. J. E. Garay, U. Anselmi-Tamburini, and Z. A. Munir, Acta. Mater. 51 4487 (2003).

    Article  CAS  Google Scholar 

  28. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1 12 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jin Shon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shon, IJ., Lee, GW., Doh, JM. et al. Effect of milling on properties and consolidation of TiO2 by high-frequency induction heated sintering. Electron. Mater. Lett. 9, 219–225 (2013). https://doi.org/10.1007/s13391-012-2142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2142-7

Keywords

Navigation