Skip to main content
Log in

Formation of flower-like magnesium hydroxide microstructure via a solvothermal process

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Flower-like magnesium hydroxide (Mg(OH)2) microstructure composed of many sheet-like nanopetals was prepared on a large scale via a solvothermal reaction at 200°C for 24 h. Water and ethanol mixed solution was employed as solvent and no additional surfactant was involved during the synthetic process. The Mg(OH)2 microflowers were characterized by XRD, SEM, HRTEM, and UV-vis techniques. The average size of single flower is about 2 µm and the thickness of the petals ranges from 20 to 30 nm. The temperature and volume ratio of water to ethanol were found to be key roles for controlling the morphology of Mg(OH)2 products. The assembled petals of the Mg(OH)2 microflowers became thicker and smoother with the amount of water decreased in the mixed solvent. The present method is low cost, simple handle and environmentally benign, thus, it can be relatively easy to be scaled up for industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Jin, X. Y. Gu, X. J. Yu, G. S. Ding, H. L. Zhu, and K. H. Yao, Mater. Chem. Phys. 112 962 (2008).

    Article  CAS  Google Scholar 

  2. J. Ok and K. Matyjaszewski, J. Inorg. Organ. Polym. Mater. 16 129 (2006).

    Article  CAS  Google Scholar 

  3. G. I. Titelman, Y. Gonen, Y. Keidar, and S. Bron, Polym. Degrad. Stabil. 77 345 (2002).

    Article  CAS  Google Scholar 

  4. J. L. Booster, A. Van Sandwijk, and M. A. Reuter, Miner. Eng. 16 273 (2003).

    Article  CAS  Google Scholar 

  5. J. Kang and P. Schwendeman, Biomaterials 23 239 (2002).

    Article  CAS  Google Scholar 

  6. N. Freslon, G. Bayon, D. Birot, C. Bollinger, and J. A. Barrat, Talanta 85 582 (2011).

    Article  CAS  Google Scholar 

  7. Z. He, X. Qian, and Y. Ni, J. Pulp Pap. Sci. 32 47 (2006).

    CAS  Google Scholar 

  8. J. J. Tan, J. Wang, L. Y. Wang, J. Xu, and D. J. Sun, J. Colloid Interf. Sci. 359 155 (2011).

    Article  CAS  Google Scholar 

  9. R. Giorgi, C. Bozzi, L. G. Dei, C. Gabbiani, B. W. Ninham, and P. Baglioni, Langmuir 21 8495 (2005).

    Article  CAS  Google Scholar 

  10. Y. D. Li, M. Sui, Y. Ding, G. H. Zhang, J. Zhuang, and C. Wang, Adv. Mater. 12 818 (2000).

    Article  CAS  Google Scholar 

  11. L. Yan, J. Zhuang, X. M. Sun, Z. X. Deng, and Y. D. Li, Mater. Chem. Phys. 76 119 (2002).

    Article  CAS  Google Scholar 

  12. H. Q. Wu, M. W. Shao, J. S. Gu, and X. W. Wei, Mater. Lett. 58 2166 (2004).

    Article  CAS  Google Scholar 

  13. W. L. Fan, S. X. Sun, L. P. You, G. X. Cao, X. Y. Song, W. M. Zhang, and H. Y. Yu, J. Mater. Chem. 13 3062 (2003).

    Article  CAS  Google Scholar 

  14. W. L. Fan, S. X. Sun, X. Y. Song, W. M. Zhang, H. Y. Yu, X. J. Tan, and G. X. Cao, J. Solid State Chem. 177 2329 (2004).

    Article  CAS  Google Scholar 

  15. L. H. Zhuo, J. C. Ge, L. H. Cao, and B. Tang, Cryst. Growth Des. 9 1 (2009).

    Article  CAS  Google Scholar 

  16. F. Al-Hazmi, A. Umar, G. N. Dar, A. A. Al-Ghamdi, S. A. Al-Sayari, A. Al-Hajry, S. H. Kim, R. M. Al-Tuwirqi, F. Alnowaiserb, and F. El-Tantawy, J. Alloy Compd. 519 4 (2012).

    Article  CAS  Google Scholar 

  17. H. C. Pang, G. L. Ning, W. T. Gong, J. W. Ye, and Y. Lin, Chem. Commun. 47 6317 (2011).

    Article  CAS  Google Scholar 

  18. L. Kumari, W. Z. Li, C. H. Vannoy, R. M. Leblanc, and D. Z. Wang, Ceram. Int. 35 3355 (2009).

    Article  CAS  Google Scholar 

  19. C. L. Yan, D. F. Xue, L. J. Zou, X. X. Yan, and W. Wang, J. Cryst. Growth 282 448 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Xu, C., Liu, Y. et al. Formation of flower-like magnesium hydroxide microstructure via a solvothermal process. Electron. Mater. Lett. 8, 529–533 (2012). https://doi.org/10.1007/s13391-012-2062-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2062-6

Keywords

Navigation