Skip to main content
Log in

Effects of oxidation and nitridation temperatures on electrical properties of sputtered Zr thin film based on Si in N2O ambient

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript


The effects of oxidation and nitridation temperatures (500–1100°C) on metal-oxide-semiconductor characteristics of sputtered Zr thin film on Si in N2O ambient have been systematically investigated. The sample being oxidized and nitrided at 700°C has demonstrated the highest effective dielectric constant of 21.82 and electrical breakdown field of 13.6 MV cm−1 at a current density of 10−6 A cm−2. This is attributed to the lowest effective oxide charge, interface-trap density, and total interface-trap density of the oxide and the highest barrier height of conduction band offset between the oxide and semiconductor when compared with others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).

    Article  CAS  Google Scholar 

  2. J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004).

    Article  CAS  Google Scholar 

  3. Y. H. Wong and K. Y. Cheong, J. Mater. Sci.: Mater. Electron. 21, 980 (2010).

    Article  CAS  Google Scholar 

  4. I. Jõgi, K. Kukli, M. Ritala, M. Leskelä, J. Aarik, A. Aidla, and J. Lu, Microelectron. Eng. 87, 144 (2010).

    Article  Google Scholar 

  5. S. Miyazaki, Appl. Surf. Sci. 190, 66 (2002).

    Article  CAS  Google Scholar 

  6. T. Yamaguchi, H. Satake, and N. Fukushima, IEEE Trans. on Electron Devices 51, 774 (2004).

    Article  CAS  Google Scholar 

  7. L. Niinistö, M. Nieminen, J. Päiväsaari, J. Niinistö, M. Putkonen, and M. Nieminen, Phys. Status Solidi A 201, 1443 (2004).

    Article  Google Scholar 

  8. A. M. Torres-Huerta, M. A. Domínguez-Crespo, E. Ramírez- Meneses, and J. R. Vargas-García, Appl. Surf. Sci. 255, 4792 (2009).

    Article  CAS  Google Scholar 

  9. L. Q. Zhu, Q. Fang, G. He, M. Liu, and L. D. Zhang, Mater. Lett. 60, 888 (2006).

    Article  CAS  Google Scholar 

  10. L.-Z. Hsieh, H.-H. Ko, P.-Y. Kuei, and C.-Y. Lee, Jpn. J. Appl. Phys. 45, 7680 (2006).

    Article  CAS  Google Scholar 

  11. H. D. Kim, S. W. Jeong, M. T. You, and Y. Roh, Thin Solid Films 515, 522 (2006).

    Article  CAS  Google Scholar 

  12. Y. Nagasato, T. Aya, Y. Iwazaki, M. Hasumi, T. Ueno, and K. Kuroiwa, Jpn. J. Appl. Phys. 44, 5 (2005).

    Article  CAS  Google Scholar 

  13. R. M. C. de Almeida and I. J. R. Baumvol, Surf. Sci. Rep. 49, 1 (2003).

    Article  Google Scholar 

  14. S. A. Campbell and R. C. Smith, in: High-k Gate Dielectrics (eds., M. Houssa), pp. 65–88, Institute of Physics (2004).

  15. L.-M. Chen, Y.-S. Lai, and J. S. Chen, Thin Solid Films 515, 3724 (2007).

    Article  CAS  Google Scholar 

  16. H. Ishii, A. Nakajima, and S. Yokoyama, J. Appl. Phys. 95, 536 (2004).

    Article  CAS  Google Scholar 

  17. M. Koyama, K. Suguro, M. Yoshiki, Y. Kamimuta, M. Koike, M. Ohse, C. Hongo, and A. Nishiyama, IEDM, pp. 459–462 (2001).

  18. Y. Enta, K. Suto, S. Takeda, H. Kato, and Y. Sakisaka, Thin Solid Films 500, 129 (2006).

    Article  CAS  Google Scholar 

  19. Y. H. Wong and K. Y. Cheong, J. Alloys Compd. 509, 8728 (2011).

    Article  CAS  Google Scholar 

  20. Y. H. Wong and K. Y. Cheong, J. Electrochem. Soc. (accepted manuscript).

  21. Y. H. Wong and K. Y. Cheong, Nano. Res. Lett. 6, 489 (2011).

    Article  Google Scholar 

  22. F.-C. Chiu, Z.-H. Lin, C.-W. Chang, C.-C. Wang, K.-F. Chuang, C.-Y. Huang, J. Y.-M. Lee, and H.-L. Hwang, J. Appl. Phys. 97, 034506 (2005).

    Article  Google Scholar 

  23. J. Wang, L. Zhao, N. H. Luu, D. Wang, and H. Nakashima, Appl. Phys. A: Mater. Sci. Process. 80, 1781 (2005).

    Article  CAS  Google Scholar 

  24. D. K. Schroder, Semiconductor Material and Device Characterization, Wiley (2006).

  25. T. Kurniawan, K. Y. Cheong, K. A. Razak, Z. Lockman, and N. Ahmad, J. Mat. Sci.: Mat. Electron. 22, 143 (2011).

    Article  CAS  Google Scholar 

  26. P. G. Tanner, S. Dimitrijev, and H. B. Harrison, Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices, pp. 211–214 (1996).

  27. S. Dimitrijev, P. G. Tanner, and H. B. Harrison, Microelectron. Reliab. 39, 441 (1999).

    Article  Google Scholar 

  28. K. P. S. S. Hembram, G. Dutta, U. V. Waghmare, and G. Mohan Rao, Physica B 399, 21 (2007).

    Article  CAS  Google Scholar 

  29. Y. Xiaolong, X. Qianghua, and M. Tao, Mat. Res. Soc. Symp. Proc. 811, D2.8.1 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kuan Yew Cheong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, Y.H., Cheong, K.Y. Effects of oxidation and nitridation temperatures on electrical properties of sputtered Zr thin film based on Si in N2O ambient. Electron. Mater. Lett. 8, 47–51 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: