Advertisement

Journal of Cryptographic Engineering

, Volume 8, Issue 2, pp 141–184 | Cite as

A review of lightweight block ciphers

  • George HatzivasilisEmail author
  • Konstantinos Fysarakis
  • Ioannis Papaefstathiou
  • Charalampos Manifavas
Review Article

Abstract

Embedded systems are deployed in various domains, including industrial installations, critical and nomadic environments, private spaces and public infrastructures. Their operation typically involves access, storage and communication of sensitive and/or critical information that requires protection, making the security of their resources and services an imperative design concern. The demand for applicable cryptographic components is therefore strong and growing. However, the limited resources of these devices, in conjunction with the ever-present need for smaller size and lower production costs, hinder the deployment of secure algorithms typically found in other environments and necessitate the adoption of lightweight alternatives. This paper provides a survey of lightweight cryptographic algorithms, presenting recent advances in the field and identifying opportunities for future research. More specifically, we examine lightweight implementations of symmetric-key block ciphers in hardware and software architectures. We evaluate 52 block ciphers and 360 implementations based on their security, performance and cost, classifying them with regard to their applicability to different types of embedded devices and referring to the most important cryptanalysis pertaining to these ciphers.

Keywords

Symmetric cryptography Lightweight cryptography Block ciphers Embedded systems security 

Notes

Acknowledgements

This work was funded by the General Secretarial Research and Technology (GSRT), Hellas under the Artemis JU research program nSHIELD (new embedded Systems arcHItecturE for multi-Layer Dependable solutions) project. Call: ARTEMIS-2010-1, Grand Agreement No.: 269317.

References

  1. 1.
    Abed, F., List, E., Lucks, S., Wenzel, J.: Cryptanalysis of the SPECK family of block ciphers. IACR Cryptology ePrint Archive: Report 568 (2013)Google Scholar
  2. 2.
    Agren, M.: Some instant- and practical-time related-key attacks on KTANTAN32/48/64. In: Miri, A., Vaudenay, S. (eds.) 18th International Conference on Selected Areas in Cryptography (SAC’11), Springer, pp. 213–229 (2011)Google Scholar
  3. 3.
    Ahmaadian, Z., Salmasizadeh, M., Aref, M.R.: Biclique cryptanalysis of the full-round KLEIN block cipher. IET Inf. Secur. 8, 294–301 (2015)CrossRefGoogle Scholar
  4. 4.
    Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalcin, T.: Block Ciphers Focus On The Linear Layer (feat. PRIDE). In: Advances in Cryptology—CRYPTO, Springer, LNCS, vol. 8616, pp. 57–76 (2014)Google Scholar
  5. 5.
    Aldabbagh, S.S.M., Shaikhli, I.F.T.A., Alahmad, M.A.: HISEC: A New Lightweight Block Cipher Algorithm. In: International Conference on Security of Information and Networks (SIN’14), Glasgow, Scotland, UK, pp. 151–157 (2014)Google Scholar
  6. 6.
    Alkhzaimi, H.A., Lauridsen, M.M.: Cryptanalysis of the SIMON family of block ciphers. IACR Cryptology ePrint Archive: Report 543 (2013)Google Scholar
  7. 7.
    Akishita, T., Hiwatari, H.: Very compact hardware implementations of the blockcipher CLEFIA. In: Selected Areas in Cryptography (SAC’12). Springer, LNCS, 7118, pp. 278–292 (2012)Google Scholar
  8. 8.
    Anjali, A., Priyanka, Pal, S.K.: A Survey of Cryptanalytic Attacks on Lightweight Block Ciphers. Int. J. Comput. Sci. Inf. Secur. 2(2), 472–481 (2012)Google Scholar
  9. 9.
    Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: a 128-bit block cipher suitable for multiple platforms design and analysis. In: Selected Areas in Cryptography (SAC’01), Springer, LNCS, pp. 39–56 (2001)Google Scholar
  10. 10.
    Aumasson, J.-P., Naya-Plasencia, M., Saarinen, M.-J.O.: Practical attack on 8 rounds of the lightweight block cipher klein. IN: Progress in Cryptology INDOCRYPT 2011, Springer, LNCS, 7107, pp. 134–145 (2011)Google Scholar
  11. 11.
    Azimi, S.A., Ahmadian, Z., Mohajeri, J., Aref, M.R.: Impossible differential cryptanalysis of Piccolo lightweight block cipher. In: International ISC Conference on Information Security and Cryptology (ISCISC), Tehran, September, pp. 89–94 (2014)Google Scholar
  12. 12.
    Bansod, G., Raval, N., Pisharoty, N.: Implementation of a new lightweight encryption design for embedded security. IEEE Trans. Inf. Forensics Secur. 10(1), 142–151 (2014)CrossRefGoogle Scholar
  13. 13.
    Batina, L., Das, A., Ege, B., Kavun, E.B., Mentens, N., Paar, C., Verbauwhede, I., Yalcin, T.: Dietary recommendations for lightweight block ciphers power, energy and area analysis of recently developed architectures. In: Hutter, M., Schmidt, J.-M. (eds.) RFIDsec 2013, vol. 8262, pp. 101–110. Springer, LNCS (2013)Google Scholar
  14. 14.
    Bay, A., Nakahara, J.Jr., Vaudenay, S.: Cryptanalysis of reduced-round MIBS Block Cipher. In: Cryptology and Network Security (CANS), Springer, LNCS, 6467(5005), pp. 1–19 (2010)Google Scholar
  15. 15.
    Beaulieu, R., Treatman-Clark, S., Douglas, S., Weeks, B., Smith, J., Wingers, L.: The SIMON and speck families of lightweight block ciphers. In: 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, pp. 1–6 (2013)Google Scholar
  16. 16.
    Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptol. 7(4), 229–246 (1994)CrossRefzbMATHGoogle Scholar
  17. 17.
    Biham, E., Dunkelman, O., Keller, N.: A related-key rectangle attack on the full KASUMI. In: Advances in Cryptology ASIACRYPT 2005, Springer, LNCS, 3788, pp. 443–461 (2005)Google Scholar
  18. 18.
    Blondeau, C., Gerard, B.: Differential Cryptanalysis of PUFFIN and PUFFIN2. Workshop on Lightweight Cryptography, ECRYPT (2011)Google Scholar
  19. 19.
    Blondeau, C., Nyberg, K.: Links between truncated differential and multidimensional linear properties of block ciphers and underlying attack complexities. In: EUROCRYPT 2014, Springer, LNCS, 8441, pp. 165–182 (2014)Google Scholar
  20. 20.
    Bogdanov, A., Khovratovich, D., Rechbergerm, C.: Biclique Cryptanalysis of the full AES. In: ASIACRYPT 2011, Springer, LNCS, 7073, pp. 344–371 (2011)Google Scholar
  21. 21.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A.: PRESENT: An Ultra-Lightweight Block Cipher. In: Cryptographic Hardware and Embedded Systems, CHES 2007, Springer, LNCS, 4727, pp. 450–466 (2007)Google Scholar
  22. 22.
    Borghoff, J., et al.: PRINCE A Low-latency Block Cipher for Pervasive Computing Applications. In: Advances in Cryptology ASIACRYPT 2012, Springer, LNCS, 7658, pp. 208–225 (2012)Google Scholar
  23. 23.
    Bos, J.W., Osvik, D.A., Stefan, D.: Fast Implementations of AES on Various Platforms. IACR Cryptology ePrint Archive: Report 501 (2009)Google Scholar
  24. 24.
    Akiroglu, M.: Software implementation and performance comparison of popular block ciphers on 8-bit low-cost microcontroller. Int. J. Phys. Sci. 5(9), 13381343 (2010)Google Scholar
  25. 25.
    Canniere, D.E., C., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN—A family of small and efficient hardware-oriented block ciphers. In: Cryptographic Hardware and Embedded Systems, CHES 2009, Springer, LNCS, 5747, pp. 272–288 (2009)Google Scholar
  26. 26.
    Canright, D.: A very compact S-box for AES. In: Cryptographic Hardware and Embedded Systems, CHES 2005, Springer, LNCS, 3659, pp. 441–455 (2005)Google Scholar
  27. 27.
    Cazorla, M., Marquet, K., Minier, M.: Survey and benchmark of lightweight block ciphers for wireless sensor networks. In: 10th International Conference on Security and Cryptography, SECRYPT, IEEE, 29–31 July, 2013, Reykjavik, pp. 1–6 (2013)Google Scholar
  28. 28.
    Cheng, H., Heys, H.M.: Compact ASIC implementation of the ICEBERG block cipher with concurrent error detection. IEEE International Symposium on Circuits and Systems—ISCAS 2008, Seattle, Wash, pp. 2921–2924 (2008)Google Scholar
  29. 29.
    Cheng, H., Heys, H.M., Wang, C.: PUFFIN: A novel compact block cipher targeted to embedded digital systems. In: 11th EUROMICRO Conference on Digital System Design Architectures—DSD 2008, Methods and Tools, Parma, Italy, pp. 383–390 (2008)Google Scholar
  30. 30.
    Courtois, N.T.: An improved differential attack on full GOST. IACR Cryptology ePrint Archive: Report, 138 (2012)Google Scholar
  31. 31.
    De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking AES with d+1 Shares in Hardware. In: Cryptographic Hardware and Embedded Systems (CHES 2016), Springer, LNCS, 9813, pp. 192–212 (2016)Google Scholar
  32. 32.
    Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: The NOEKEON Block Cipher, pp. 1–30. http://gro.noekeon.org/ (2000)
  33. 33.
    Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: On Noekeon, no! http://gro.noekeon.org/ (2001)
  34. 34.
    Das, S.: Halka: a lightweight, software friendly block cipher using ultra-lightweight 8-bit S-box. IACR Cryptology ePrint Archive: Report 110 (2014)Google Scholar
  35. 35.
    Dinu, D., Corre, Y.L., Khovratovich, D., Perrin, L., Grobshadl, J., Biryukov, A.: Triathlon of lightweight block ciphers for the internet of things. NIST Lightweight Cryptography Workshop 2015, NIST, July 20–21, 2015, Gaithersburg, pp. 1–18 (2015)Google Scholar
  36. 36.
    Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., Uhsadel, L.: A survey of lightweight-cryptography implementations. IEEE Des. Test Comput. 24(6), 522533 (2007)CrossRefGoogle Scholar
  37. 37.
    Eisenbarth, T., et al.: Compact implementation and performance evaluation of block ciphers in ATtiny devices. In: Progress in Cryptology—AFRICACRYPT 2012, Springer, LNCS, 7374, pp. 172–187 (2012)Google Scholar
  38. 38.
    Engels, D., Fan, X., Gong, G., Hu, H., Smith, E.M.: Hummingbird: ultra-lightweight cryptography for resource-constrained devices. In: Financial Cryptography and Data Security—FC 2010, Springer, LNCS, 6054, pp. 3–18 (2010)Google Scholar
  39. 39.
    Engels, D., Saarinen, M.O., Schweitzer, P., Smith, E.M.: The hummingbird-2 lightweight authenticated encryption algorithm. RFID Security and Privacy, Springer, LNCS 7055, 19–31 (2011)CrossRefGoogle Scholar
  40. 40.
    Engels, S., Kavun, E.B., Mihajloska, H., Paar, C., Yalcin, T.: A non-linear/linear instruction set extension for lightweight block ciphers. In: 21st IEEE Symposium on Computer Arithmetics (ARITH’21), IEEE Computer Society, Austin, TX, pp. 76–75 (2014)Google Scholar
  41. 41.
    EPCGLOBAL: EPC Tag Data Standard Version 1.5 EPCglobal Specification (2010)Google Scholar
  42. 42.
    ETSI’S Security Algorithms Group Of Experts (SAGE): Specification of the 3GPP confidentiality and integrity algorithms, Document 2: Kasumi specification (2007)Google Scholar
  43. 43.
    Fysarakis, K., Hatzivasilis, G., Askoxylakis, I.G., Manifavas, C.: RT-SPDM: real-time security, privacy and dependability management of heterogeneous systems. In: Human Aspects of Information Security, Privacy and Trust (HCI International 2015), Springer, LNCS, 9190, pp. 619–630 (2015)Google Scholar
  44. 44.
    Fysarakis, K., Hatzivasilis, G., Papaefstathiou, I., Manifavas, C.: RtVMF—a secure real-time vehicle management framework with critical incident response. IEEE Pervasive Comput. Mag. Spec. Issue Smart Veh. Spaces 15(1), 22–30 (2016)Google Scholar
  45. 45.
    Fysarakis, K., Hatzivasilis, G., Rantos, K., Papanikolaou, A., Manifavas, C.: Embedded systems security challenges. In: Measurable Security for Embedded Computing and Communication Systems—MeSeCCs 2014, 7–9 January, 2014, Lisbon, Portugal, pp. 1–10 (2014)Google Scholar
  46. 46.
    Gerard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that are easier to mask: how far can we go? In: Cryptographic Hardware and Embedded Systems, CHES 2013, LNCS, vol. 8086, pp. 383–399. Springer, Berlin (2013)Google Scholar
  47. 47.
    Gligoroski, D.: Edon-library of Reconfigurable Cryptographic Primitives Suitable for Embedded Systems. Workshop on Cryptographic Hardware and Embedded Systems (2003)Google Scholar
  48. 48.
    Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers. RFID Security and Privacy, Springer, LNCS 7055, 1–18 (2012)CrossRefGoogle Scholar
  49. 49.
    Grosso, V., Laurent, G., Standaert, F.-X., Varici, K.: LS-Designs: Bitslice encryption for efficient masked software implementations. In: Fast Software Encryption, FSE 2014, Springer, LNCS, 8540 (2014)Google Scholar
  50. 50.
    Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Advances in Cryptology CRYPTO 2011, Springer, LNCS, 6841, pp. 222–239 (2011)Google Scholar
  51. 51.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED Block Cipher, Cryptographic Hardware and Embedded Systems, CHES 2011. Springer, LNCS 6917, 326–341 (2011)zbMATHGoogle Scholar
  52. 52.
    Guo, X., Schaumont, P.: The technology dependence of lightweight hash implementation cost. ECRYPT Workshop on Lightweight Cryptography (LC ’11) (2011)Google Scholar
  53. 53.
    Guo, X.: Secure and Efficient Implementations of Cryptographic Primitives. Virginia Polytechnic Institute and State University, Blacksburg (2012)Google Scholar
  54. 54.
    Hamalainen, P., et al.: Design and implementation of low-area and low-power AES encryption hardware core. In: 9th IEEE EUROMICRO Conference Digital System Design: Architectures, Methods and Tools, 2006. DSD 2006, pp. 577–583 (2006)Google Scholar
  55. 55.
    Hatzivasilis, G., Floros, G., Papaefstathiou, I., Manifavas, C.: Lightweight Authenticated Encryption for Embedded On-Chip Systems, Information Security Journal: A Global Perspective. Taylor & Francis, Bristol (2016)Google Scholar
  56. 56.
    Hatzivasilis, G., Gasparis, E., Theodoridis, A., Manifavas, C.: ULCL: an Ultra-Lightweight Cryptographic Library for Embedded Systems. In: Measurable Security for Embedded Computing and Communication Systems—MeSeCCs 2014, 7–9 January, 2014, Lisbon, Portugal, pp. 11–18 (2014)Google Scholar
  57. 57.
    Hatzivasilis, G., Manifavas, C.: Building trust in ad hoc distributed resource-sharing networks using reputation-based systems. In: 16th Panhellenic Conference on Informatics (PCI 2012), IEEE, 5–7 October, 2012, Piraeus, Greece, pp. 416–421 (2012)Google Scholar
  58. 58.
    Hatzivasilis, G., Papaefstathiou, I., Manifavas, C.: ModConTR: a modular and configurable trust and reputation-based system for secure routing. In: 11th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA’2014), IEEE, Doha, Qatar, 10–13 November, 2014, pp. 56–63 (2014)Google Scholar
  59. 59.
    Hatzivasilis, G., Papaefstathiou, I., Manifavas, C., Askoxylakis, I.: Lightweight password hashing scheme for embedded systems. In: 9th WG 11.2 International Conference on Information Security Theory and Practice (WISTP), IFIP, Springer, LNCS, 9311, pp. 249–259 (2015)Google Scholar
  60. 60.
    Hong, D., et al., HIGHT: a new block cipher suitable for low-resource device. In: Cryptographic Hardware and Embedded Systems, CHES 2006, Springer, LNCS, 4249, pp. 46–59 (2006)Google Scholar
  61. 61.
    Hong, D., Lee, J.-K., Kim, D.-C., Kwon, D., Ryu, K.H., Lee, D.-G.: LEA: a 128-bit block cipher for fast encryption on common processors. In: International Workshop on Information Security Applications (WISA 2013), Springer, LNCS, 8267, pp. 3–27 (2014)Google Scholar
  62. 62.
    Huand, J., Vaudenay, S., Lai, X.: On the key schedule of lightweight block ciphers. In: Progress in Cryptology INDOCRYPT 2014, Springer, LNCS, 8885, pp. 124–142 (2014)Google Scholar
  63. 63.
    Indesteege, S., Keller, N., Dunkelman, O., Biham, E., Preneel, B.: A practical attack on Keeloq. In: Advances in Cryptology—EUROCRYPT 2008, Springer, LNCS, 4965, pp. 1–18 (2008)Google Scholar
  64. 64.
    Isobe, T.: A single-key attack on the full GOST block cipher. In: Fast Software Encryption, FSE 2011, Springer, LNCS, 6733, pp. 290–305 (2011)Google Scholar
  65. 65.
    Israsena, P., Wongnamkum, S.: Hardware implementation of a TEA-based lightweight encryption for RFID security. RFID Secur. 2009(3), 417433 (2009)Google Scholar
  66. 66.
    Izadi, M., Sadeghiyan, B., Sadeghian, S.S., Khanooki, H.A.: MIBS: a new lightweight block cipher. In: Cryptology and Network Security (CANS), Springer, LNCS, 5888, pp. 334–348 (2009)Google Scholar
  67. 67.
    Jacob, J.: BEST-1: a light weight block cipher. In: IOSR Journal of Computer Engineering (IOSR-JCE), vol. 16, issue 2, ver. XII, March–April, pp. 91–95 (2014)Google Scholar
  68. 68.
    Jean, J., Nikoli, I., Peyrin, T., Wang, L., Wu, S.: Security analysis of PRINCE. In: Fast Software Encryption, FSE 2013, Springer, LNCS, 8424, pp. 92–111 (2014)Google Scholar
  69. 69.
    Jeong, K., Kang, H., Lee, C., Sung, J., Hong, S.: Biclique cryptanalysis of lightweight block ciphers present, piccolo and led. IACR Cryptol. ePrint Arch. p. 621 (2012)Google Scholar
  70. 70.
    Jeong, K., Lee, C., Lim, J.I.: Improved differential fault analysis on lightweight block cipher LBlock for wireless sensor networks. EURASIP J. Wirel. Commun. Netw. (JWCN), 2013/1/151 (2013)Google Scholar
  71. 71.
    Jeong, K., Lee, Y., Sung, J., Hong, S.: Improved differential fault analysis on PRESENT-80/128. Int. J. Comput. Math. 90(12), 25532563 (2013)CrossRefzbMATHGoogle Scholar
  72. 72.
    Junod, P.: On the Complexity of Matsui’s Attack. In: Selected areas in cryptography (SAC’01), Springer, LNCS, 2259, pp. 199–211 (2001)Google Scholar
  73. 73.
    Kaps, J.-P.: Chai-tea, cryptographic hardware implementations of xtea. In: Progress in Cryptology INDOCRYPT 2008, Springer, LNCS, 5365, pp. 363–375 (2008)Google Scholar
  74. 74.
    Karakoc, F., Demirci, H., Harmanci, A.E.: ITUbee: a software oriented lightweight block cipher. Lightweight Cryptography for Security and Privacy, Springer, LNCS 8162, 16–27 (2013)CrossRefzbMATHGoogle Scholar
  75. 75.
    Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-WAY. In: Biham-DES, CAST, DES-X, newDES, RC2, and TEA, ICICS’97. Springer, pp. 233–246 (1997)Google Scholar
  76. 76.
    Khovratovich, D., Leurent, G., Rechberger, C.: Narrow-Bicliques: Cryptanalysis of Full IDEA. In: EUROCRYPT 2012, Springer, LNCS, 7237, pp. 392–410 (2012)Google Scholar
  77. 77.
    Kim, Y., Yoon, H.: First Experimental Result of Power Analysis Attacks on a FPGA Implementation of LEA. IACR Cryptology ePrint Archive: Report, 999 (2014)Google Scholar
  78. 78.
    Kitsos, P., Sklavos, N., Parousi, M., Skodras, A.N.: A comparative study of hardware architectures for lightweight block ciphers. Comput. Electr. Eng. 38(1), 148160 (2012)CrossRefGoogle Scholar
  79. 79.
    Knudsen, L.R., Raddum, H.: On Noekeon. Public reports of the NESSIE project. Report: NES/DOC/UIB/WP3/009/1 (2001)Google Scholar
  80. 80.
    Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: a block cipher for IC-printing. In: Cryptographic hardware and embedded systems, CHES 2010, Springer, LNCS, 6225, pp. 16–32 (2010)Google Scholar
  81. 81.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in Cryptology, CRYPTO’99, Springer, pp. 388–397 (1999)Google Scholar
  82. 82.
    Koo, B., Hong, D., Kwon, D.: Related-key attack on the full HIGHT. In: Information Security and Cryptology, ICISC 2010, Springer, LNCS, 6829, pp. 49–67 (2011)Google Scholar
  83. 83.
    Kumar, M., Pal, S.K., Panigrahi, A.: FeW: a lightweight block cipher. IACR Cryptology ePrint Archive: Report 326 (2014)Google Scholar
  84. 84.
    Lai, X., Massey, J.L.: A proposal for a new block encryption standard. In: Advances in Cryptology EUROCRYPT ’90, Springer, LNCS, 473, pp. 389–404 (1991)Google Scholar
  85. 85.
    Leander, G.: On linear hulls, statistical saturation attacks. In: PRESENT and a cryptanalysis of PUFFIN, EUROCRYPT 2011, Springer, LNCS, 6632, pp. 303–322 (2011)Google Scholar
  86. 86.
    Leander, G., Minaud, B., Ronjom, S.: A Generic Approach to Invariant Subspace Attacks: Cryptanalysis of Robin, iSCREAM and Zorro. In: EUROCRYPT 2015, IACR, Sofia, Bulgaria, 26–30 April (2015)Google Scholar
  87. 87.
    Leander, G., Paar, C., Poschmann, A., Schramm, K.: New lightweight des variants, fast software encryption. In: FSE 2007, Springer, LNCS, 4593, pp. 196–210 (2007)Google Scholar
  88. 88.
    Lee, D., Kim, D.-C., Kwon, D., Kim, H.: Efficient hardware implementation of the lightweight block encryption algorithm LEA. Sensors 14, 975–994 (2014)CrossRefGoogle Scholar
  89. 89.
    Lee, Y., Jeong, K., Lee, C., Sung, J., Hong, S.: Related-key cryptanalysis on the full PRINTcipher suitable for IC-printing. Int. J. Distrib. Sens. Netw. 2014. article ID 389476, p. 10 (2014)Google Scholar
  90. 90.
    Lim, C.H.: A revised version of CRYPTON: CRYPTON V1.0. In: Fast Software Encryption, FSE 1999, Springer, LNCS, 1636, pp. 31–45 (1999)Google Scholar
  91. 91.
    Lim, C.H., Korkishko, T.: mCrypton–a lightweight block cipher for security of low-cost RFID tags and Sensors. Information Security Applications, Springer, LNCS 3786, 243–258 (2006)CrossRefGoogle Scholar
  92. 92.
    Lim, Y.-I., Lee, J.-H., You, Y., Cho, K.-R.: Implementation of HIGHT cryptic circuit for RFID tag. IEICE Electron. Express 6(4), 180186 (2009)CrossRefGoogle Scholar
  93. 93.
    Lu, J.: Related-key rectangle attack on 36 rounds of the XTEA block cipher. Int. J. Inf. Secur. 8(1), 111 (2008)Google Scholar
  94. 94.
    Mace, F., Standaert, F.-X., Quisquater, J.: ASIC implementations of the block cipher sea for constrained applications. In: RFID Security (RFIDsec 2007), Malaga, Spain, pp. 103–114 (2007)Google Scholar
  95. 95.
    Manifavas, C., Hatzivasilis, G., Fysarakis, K., Papaefstathiou, I.: A survey of lightweight stream ciphers for embedded systems. Secur. Commun. Netw. 21(9), 1226–1246 (2015)Google Scholar
  96. 96.
    Manifavas, C., Hatzivasilis, G., Fysarakis, K., Rantos, K.: Lightweight cryptography for embedded systems a comparative analysis. In: 6th International Workshop on Autonomous and Spontaneous Security SETOP 2012, Springer, LNCS, 8247, pp. 333–349 (2012)Google Scholar
  97. 97.
    Matsui, M.: New block encryption algorithm MISTY. In: Fast Software Encryption (FSE 1997) Springer, LNCS, 1267, pp. 54–68 (1997)Google Scholar
  98. 98.
    Mentens, N., Genoe, J., Preneel, B., Verbauwhede, I.: A low-cost implementation of Trivium, SASC, pp. 197–204 (2008)Google Scholar
  99. 99.
    Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a very compact and a threshold implementation of AES. In: Advances in Cryptology EUROCRYPT 2011, Springer, LNCS, 6632, pp. 69–88 (2011)Google Scholar
  100. 100.
    Mukherjee, S., Sahoo, B.: A survey on hardware implementation of IDEA cryptosystem. Inf. Secur. J.: A Glob. Perspect. 20(4–5), 210218 (2011)Google Scholar
  101. 101.
    Needham, R., Wheeler, D.: TEA extensions. Technical report, Computer Laboratory, University of Cambridge, October (1997)Google Scholar
  102. 102.
    Nikova, S., Rijmen, V., Schlaffer, M.: Secure hardware implementation of nonlinear functions in the presence of glitches. J. Cryptol. 24(2), 292321 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  103. 103.
    Ojha, S.K., Kumar, N., Jain, K.: Sangeeta. TWIS—a lightweight block cipher. In: Information Systems Security, Springer, LNCS, 5905, pp. 280–291 (2009)Google Scholar
  104. 104.
    Ozen, O., Varici, K., Tezcan, C., Kocair, C.: Lightweight block ciphers revisited: cryptanalysis of reduced round PRESENT and HIGHT. Information Security and Privacy, Springer, LNCS 5594, 90–107 (2009)CrossRefzbMATHGoogle Scholar
  105. 105.
    Paar, C., Poschmann, A., Robshaw, M.J.B.: New designs in lightweight symmetric encryption. RFID Secur. 3, 349371 (2009)Google Scholar
  106. 106.
    Park, J.H.: Security analysis of mCrypton proper to low-cost ubiquitous computing devices and applications. Int. J. Commun. Syst. 22(8), 959969 (2009)Google Scholar
  107. 107.
    Piret, G., Roche, T., Carlet, C.: PICARO–a block cipher allowing efficient higher-order side-channel resistance. Applied Cryptography and Network Security, Springer, LNCS 7341, 311–328 (2012)CrossRefGoogle Scholar
  108. 108.
    Plos, T., Dobraunig, C., Hofinger, M., Oprisnik, A., Wiesmeier, C., Wiesmeier, J.: Compact hardware implementation of the block ciphers mCrypton, NOEKEON, and SEA. In: Progress in Cryptology INDOCRYPT 2012, Springer, LNCS, 7668, pp. 358–377 (2012)Google Scholar
  109. 109.
    Plos, T., Grob, H., Feldhofer, M.: Implementation of symmetric algorithms on a synthesizable 8-bit microcontroller targeting passive RFID tags. In: Selected Areas in Cryptography (SAC’11), Springer, LNCS, 6544, pp. 114–129 (2011)Google Scholar
  110. 110.
    Poschmann, A.: Lightweight Cryptography: Cryptographic Engineering for a Pervasive World. Ruhr-University, Bochum (2009)Google Scholar
  111. 111.
    Poschmann, A., Ling, S., Wang, H.: 256 bit standardized crypto for 650 GE GOST revisited. In: Cryptographic Hardware and Embedded Systems, CHES 2010, Springer, LNCS, 6225, pp. 219–233 (2010)Google Scholar
  112. 112.
    Rabbaninejad, R., Ahmadian, Z., Salmasizadeh, M., Aref, M.R.: Cube and dynamic cube attacks on SIMON32/64. In: International ISC Conference on Information Security and Cryptology (ISCISC), Tehran, pp. 98–103 (2014)Google Scholar
  113. 113.
    Reddy, V.A.: A Cryptanalysis of the Tiny Encryption Algorithm. University of Alabama, Tuscaloosa (2003)Google Scholar
  114. 114.
    Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Information Security and Cryptology, Inscrypt 2009, LNCS, vol 6151, pp. 393–410. Springer (2009)Google Scholar
  115. 115.
    Rinne, S., Eisenbarth, T., Paar, C.: Performance Analysis of Contemporary Light-Weight Block Ciphers on 8-bit Microcontrollers, Software Performance Enhancement for Encryption and Decryption (SPEED 2007), Amsterdam, NL, (2007)Google Scholar
  116. 116.
    Robshaw, M.J.B.: Searching for Compact Algorithms: CGEN. In: Progress in Cryptology—VIETCRYPT 2006, Springer, LNCS, 4341, pp. 37–49 (2006)Google Scholar
  117. 117.
    Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-lightweight implementations for smart devicessecurity for 1000 gate equivalents. Smart Card Research and Advanced Applications, Springer, LNCS 5189, 89–103 (2008)CrossRefzbMATHGoogle Scholar
  118. 118.
    Roman, R., Alcaraz, C., Lopez, J.: A survey of cryptographic primitives and implementations for hardware-constrained sensor network nodes. Mob. Netw. Appl. 12(4), 231244 (2007)CrossRefGoogle Scholar
  119. 119.
    Saarinen, M-J.O.: Cryptanalysis of hummingbird-1. In: Fast Software Encryption (FSE 2011), Springer, LNCS, 6733, pp. 328–341 (2011)Google Scholar
  120. 120.
    Saarinen, M.-J.O.: Related-key attacks against full hummingbird-2. In: Fast Software Encryption (FSE 2014), Springer, LNCS, 8424, pp. 467–482 (2014)Google Scholar
  121. 121.
    Sarma, S.E.: Towards the five-cent tag—MIT-AUTOID-WH-006 (2001)Google Scholar
  122. 122.
    Satoh, A., Morioka, S.: Small and High-Speed Hardware Architectures for the 3GPP Standard Cipher KASUMI. In: International Conference on Information Security (ISC 2002), Springer, LNCS, 2433, pp. 48–62 (2002)Google Scholar
  123. 123.
    Satoh, A., Morioka, S.: Hardware-focused performance comparison for the standard block ciphers AES. Camellia, and Triple-DES, Information Security, Springer, LNCS 2851, 252–266 (2003)Google Scholar
  124. 124.
    Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: an ultra-lightweight blockcipher. In: Cryptographic Hardware and Embedded Systems (CHES 2011), Springer, LNCS, 6917, pp. 342–357 (2011)Google Scholar
  125. 125.
    Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (extended abstract). In: Fast Software Encryption (FSE 2007), Springer, LNCS, 4593, pp. 181–195 (2007)Google Scholar
  126. 126.
    Soleimany, H.: Self-similarity cryptanalysis of the block cipher ITUbee. IET Inf. Secur. 9(3), 179–184 (2014)CrossRefGoogle Scholar
  127. 127.
    Soleimany, H., et al.: Reflection cryptanalysis of PRINCE-like ciphers. J. Cryptol. 28(3), 718–744 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  128. 128.
    Song, J., Lee, K., Lee, H.: Biclique cryptanalysis on lightweight block cipher: HIGHT and Piccolo. Int. J. Comput. Math. 90(12), 25642580 (2013)CrossRefzbMATHGoogle Scholar
  129. 129.
    Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.: SEA: a scalable encryption algorithm for small embedded applications. IN: Smart Card Research and Advanced Applications, Springer, LNCS, 3928, pp. 222–236 (2006)Google Scholar
  130. 130.
    Standaert, F.-X., Piret, G., Rouvroy, G., Quisquater, J., Legat, J.-D.: ICEBERG: an involutional cipher efficient for block encryption in reconfigurable hardware. In: Fast Software Encryption (FSE 2004), Springer, LNCS, 3017, pp. 279–298 (2004)Google Scholar
  131. 131.
    Standard, NIST FIPS: Data Encryption Standard (DES). Federal Information Processing Standards Publication, 46-3 (1999)Google Scholar
  132. 132.
    Standard, NIST FIPS: Advanced Encryption Standard (AES). Federal Information Processing Standards Publication, 197 (2001)Google Scholar
  133. 133.
    Su, B., Wu, W., Zhang, L., Li, Y.: Full-round differential attack on TWIS block cipher. Information Security Applications, Springer, LNCS 6513, 234–242 (2010)CrossRefGoogle Scholar
  134. 134.
    Sun, Y., Wang, M., Jiang, S., Sun, Q.: Differential cryptanalysis of reduced-round ICEBERG. AFRICACRYPT 2012, Springer, LNCS, 7374, pp. 155–171 (2012)Google Scholar
  135. 135.
    Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: Twine: a lightweight, versatile block cipher. In: ECRYPT Workshop on Lightweight Cryptography (LC11), pp. 146–169 (2011)Google Scholar
  136. 136.
    Texcan, C.: The improbable differential attack: cryptanalysis of reduced round CLEFIA. INDOCRYPT 2010, Springer, LNCS, 6498, pp. 197–209 (2010)Google Scholar
  137. 137.
    Tigli, O.: Area efficient ASIC implementation of IDEA (International Data Encryption Standard). Best design for ASIC implementation of IDEA, GMU (2003)Google Scholar
  138. 138.
    TOSHIBA: Toshiba CMOS Technology Roadmap for ASIC (2015). http://www.toshiba-components.com/ASIC/Technology.html
  139. 139.
    Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Differential fault analysis on the families of SIMON and SPECK ciphers. In: Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), IEEE, 23 September, 2014, pp. 40–48. Busan, Korea (2014)Google Scholar
  140. 140.
    Ullrich, M., Canniere, C.D., Indesteege, S., Kucuk, O., Mouha, N., Preneel, B.: Finding optimal bitsliced implementations of 4 \(\times \) 4-bit S-boxes. Copenhagen, DK, Symmetric Key Encryption Workshop (SKEW) (2011)Google Scholar
  141. 141.
    Walter, M., Bulygin, S., Buchmann, J.: Optimizing guessing strategies for algebraic cryptanalysis with applications to EPCBC. Information Security and Cryptology, Springer, LNCS 7763, 175–197 (2013)CrossRefzbMATHGoogle Scholar
  142. 142.
    Wang, C., Heys, H.M.: An ultra compact block cipher for serialized architecture implementations. In: Canadian Conference on Electrical and Computer Engineering (CCECE ’09), St. John’s, Newfoundland, IEEE, pp. 1085–1090 (2009)Google Scholar
  143. 143.
    Wang, Y., Wu, W., Yu, X., Zhang, L.: Security on lblock against biclique cryptanalysis. In: Information Security Applications (WISA 2012), Springer, LNCS, 7690, pp. 1–14 (2012)Google Scholar
  144. 144.
    Wen, L., Wang, M., Bogdanov, A., Chen, H.: Multidimensional zero-correlation attacks on lightweight block cipher HIGHT: improved cryptanalysis of an ISO standard. Inf. Process. Lett. 114, 322330 (2014)CrossRefzbMATHGoogle Scholar
  145. 145.
    Weis, S.: Security and privacy in radio-frequency identification devices. Faculty of the Massachusetts Institute of Technology (M.I.T.) (2003)Google Scholar
  146. 146.
    Wheeler, D., Needham, R.: TEA, a tiny encryption algorithm. In: Fast Software Encryption (FSE 1994), Springer, LNCS, 1008, pp. 363–366 (1994)Google Scholar
  147. 147.
    Wheeler, D., Needham, R.: Correction to XTEA. Technical report, Computer Laboratory, University of Cambridge, October (1998)Google Scholar
  148. 148.
    Wu, W., Zhang, L.: LBlock: a lightweight block cipher. Applied Cryptography and Network Security, Springer, LNCS 6715, 327–344 (2011)CrossRefzbMATHGoogle Scholar
  149. 149.
    Yang, L., Wang, M., Qiao, S.: Side channel cube attack on PRESENT. In: Cryptology and Network Security (CANS), Springer, LNCS, 5888, pp. 379–391 (2009)Google Scholar
  150. 150.
    Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC—a block cipher suitable for electronic product code encryption. In: Cryptology and Network Security (CANS), Springer, LNCS, 7092, pp. 76–97 (2011)Google Scholar
  151. 151.
    Yarrkov, E.: Cryptanalysis of XXTEA. IACR Cryptology ePrint Archive: Report, 254 (2010)Google Scholar
  152. 152.
    Yoshikawa, H., Kaminaga, M., Shikoda, A., Suzuki, T.: Secret key reconstruction method using round addition DFA on lightweight block cipher LBlock. In: International Symposium on Information Theory and its Applications (ISITA), Melbourne, VIC, pp. 493–496 (2014)Google Scholar
  153. 153.
    Yu, Y., Yang, Y., Fan, Y., Min, H.: Security scheme for RFID tags. Fudan University, White paper, Auto-ID Labs (2006)Google Scholar
  154. 154.
    Z’aba, M.R., Jamil, N., Rusli, M.E., Jamaludinm, M.Z., Yasir, A.A.M.: \(\text{I-PRESENT}^{TM}\): an involutive lightweight block cipher. J. Inf. Secur. Sci. Res. 5, 114–122 (2014)Google Scholar
  155. 155.
    Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE: a bit-slice ultra-lightweight block cipher suitable for multiple platforms. Sci. China Inf. Sci. 58(12), 1–15 (2014)Google Scholar
  156. 156.
    Zhao, G., Li, R., Cheng, L., Li, C., Sun, B.: Differential fault analysis on LED using Super-Sbox. IET Inf. Secur. 9(4), 209–218 (2014)CrossRefGoogle Scholar
  157. 157.
    Zhao, G., Sun, B., Li, C., Su, J.: Truncated differential cryptanalysis of PRINCE. Secur. Commun. 8(16), 2875–2887 (2015)Google Scholar
  158. 158.
    Zhao, X., Wang, T., Zheng, Y.: Cache timing attacks on camellia block cipher. IACR Cryptology ePrint Archive: Report 354 (2009)Google Scholar
  159. 159.
    Zhu, B., Gong, G.: Multidimensional meet-in-the-middle attack and its applications to KATAN32/48/64. Cryptogr. Commun. 6(4), 313–333 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Electronic and Computer EngineeringTechnical University of CreteChania, CreteGreece
  2. 2.Department of Electrical Engineering and Computer SciencesRochester Institute of Technology DubaiSilicon Oasis, DubaiUAE

Personalised recommendations