Skip to main content
Log in

Insurance: models, digitalization, and data science

  • Original Research Paper
  • Published:
European Actuarial Journal Aims and scope Submit manuscript


This article summarizes the main topics and findings from the Swiss Risk and Insurance Forum 2018. That event gathered experts from academia, insurance industry, regulatory bodies, and consulting companies to discuss the challenges arising from the impact of data science and, more generally, of digitalization to the insurance sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Albrecher H, Bauer D, Embrechts P, Filipovic D, Koch-Medina P, Korn R, Loisel S, Pelsser A, Schiller F, Schmeiser H, Wagner J (2018) Asset-liability management for long-term insurance business. Eur Actuar J 8:9–25

    Article  MathSciNet  Google Scholar 

  2. Albrecher H, Embrechts P, Filipovic D, Harrison G, Koch P, Loisel S, Vanini P, Wagner J (2016) Old-age provision: past, present and future. Eur Actuar J 6:287–306

    Article  MathSciNet  Google Scholar 

  3. Albrecht P, Huggenberger M (2017) The fundamental theorem of mutual insurance. Insur Math Econ 75:180–188

    Article  MathSciNet  Google Scholar 

  4. Ayuso M, Guillen M, Pérez-Marín AM (2016) Telematics and gender discrimination: some usage-based evidence on whether men’s risk of accidents differs from women’s. Risks 4:10

    Article  Google Scholar 

  5. Bafin (2018) Supervision and regulation in the age of big data and artificial intelligence, Bafin Perspectives

  6. Baudry M, Robert CY (2017) Non-parametric individual claim reserving in insurance. Working paper

  7. Browne MJ, Gemmo I, Gründl H (2018) Privacy concerns in insurance markets: implications for market equilibria and social welfare. ICIR Working Paper Series, No. 25

  8. Cappiello A (2018) Technology and the insurance industry. Palgrave-Macmillan, London

    Book  Google Scholar 

  9. Denuit M, Hainaut D, Trufin J (2019) Effective statistical learning methods for actuaries. Springer, Berlin

    Book  Google Scholar 

  10. Eling M, Lehmann M (2018) The impact of digitalization on the insurance value chain and the insurability of risks. Geneva Pap Risk Insur Issues Pract 43:359–396

    Article  Google Scholar 

  11. Karoui N, El S, Loisel Y Salhi (2017) Minimax optimality in robust detection of a disorder time in doubly-stochastic Poisson processes. Ann Appl Probab 27:2515–2538

    Article  MathSciNet  Google Scholar 

  12. Gatzert N, Schmeiser H (2012) The merits of pooling claims revisited. J Risk Finance 13:184–198

    Article  Google Scholar 

  13. Guillen M, Nielsen JP, Ayuso M, Pérez-Marín AM (2018) The use of telematics devices to improve automobile insurance rates. Risk Anal 39:662–672

    Article  Google Scholar 

  14. Koch-Medina P, Cambou M, Munari C (2014) Expert forum on “risk measures and regulation in insurance”. University of Zurich.

  15. Lopez O, Milhaud X, Thérond P (2016) Tree-based censored regression with applications in insurance. Electron J Stat 10:2685–2716

    Article  MathSciNet  Google Scholar 

  16. McKinsey (2016a) Automating the insurance industry, McKinsey Quarterly

  17. McKinsey (2016b) Making Digital strategy a reality in insurance, Digital McKinsey

  18. McKinsey (2017) Digital disruption in insurance: cutting through the noise, Digital McKinsey

  19. Naylor M (2017) Insurance transformed: technological disruption. Palgrave-Macmillan, London

    Book  Google Scholar 

  20. Naveed M, Ayday E, Clayton E, Fellay J, Gunter C, Hubaux J-P, Malin B, Wang X (2015) Privacy in the Genomic Era. ACM Comput Surv 48:1–43

    Article  Google Scholar 

  21. Nakamoto S (2018) Bitcoin: a peer-to-peer electronic cash system. Working Paper.

  22. Ohlsson E, Johansson B (2010) Non-life insurance pricing with generalized linear models, vol 2. Springer, Berlin

    Book  Google Scholar 

  23. Sandor RL (2018) Electronic trading and blockchain: yesterday, today and tomorrow. World Scientific Publishing, Singapore

    Book  Google Scholar 

  24. Verbelen R, Antonio K, Claeskens G (2018) Unravelling the predictive power of telematics data in car insurance pricing. J R Stat Soc Ser C (Appl Stat) 67:1275–1304

    Article  MathSciNet  Google Scholar 

  25. Wüthrich MV (2018) Neural networks applied to chain-ladder reserving. Eur Actuar J 8:407–436

    Article  MathSciNet  Google Scholar 

Download references


We thank Stephan Schreckenberg for suggesting the format of the conference, and for his critical and active support in the creation of the Swiss Risk and Insurance Forum. We thank all participants for the stimulating and lively discussion: 1. Hansjörg Albrecher (Université de Lausanne, SFI), 2. Gianluca Antonini (Swiss Re), 3. Jörg Behrens (Fintegral), 4. Antoine Bommier (ETH Zurich), 5. Karsten Bromann (Solidum), 6. Roland Bürgi (Systemorph), 7. Michel Denuit (UC Louvain), 8. Liran Einav (Stanford University), 9. Damir Filipovic (EPFL, SFI), 10. Isabelle Flückiger (Accenture), 11. Irina Gemmo (University of Frankfurt), 12. Hansjörg Germann (Zurich Insurance), 13. Kai Giesecke (Stanford University), 14. Jean-Pierre Hubaux (EPFL), 15. Carmelo Iantosca (AXA-Winterthur), 16. Benno Keller (Geneva Association), 17. Pablo Koch (University of Zurich, SFI), 18. Kai-Nicholas Kunze (Generali Lings), 19. Stéphane Loisel (Université Lyon 1), 20. Alexander Mürmann (WU Wien), 21. Michael Müller (Baloise), 22. Tanguy Polet (Swiss Life France), 23. Frank Schiller (Munich Re), 24. Hato Schmeiser (University of St. Gallen), 25. Stephan Schreckenberg (Swiss Re Institute), 26. Effy Vayena (ETH Zurich), 27. Heiner Weber (Katalysen), 28. Stefan Weber (LU Hannover), 29. Lutz Wilhelmy (Swiss Re). The Swiss Risk and Insurance Forum 2018 received financial support from Fintegral, Swiss Re Institute, the Swissquote Chair in Quantitative Finance at EPFL, the ETH Risk Centre, the Center for Finance and Insurance at the University of Zurich and the Department of Actuarial Science of the University of Lausanne.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pablo Koch-Medina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albrecher, H., Bommier, A., Filipović, D. et al. Insurance: models, digitalization, and data science. Eur. Actuar. J. 9, 349–360 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: