European Actuarial Journal

, Volume 8, Issue 2, pp 321–362 | Cite as

Old-age care prevalence in Switzerland: drivers and future development

  • Michel Fuino
  • Joël WagnerEmail author
Original Research Paper


Long-term care (LTC) delivered to elderly persons in need of assistance in activities of daily living is a topic of increasing importance. The financing of LTC, the needs for specialized infrastructure and the limited number of caregivers will pose a systemic threat in many developed countries. In this paper, we analyze the factors influencing the old-age care prevalence rates in Switzerland through a log-linear regression model. Based on a cross-sectional dataset covering the LTC needs from 1995 to 2014, we statistically support the effect of key drivers such as the age, the gender and the region of residence. We distinguish the prevalence by the mild, moderate and severe frailty levels and by care received either at home or in an institution. Our regression results evidence that prevalence rates exponentially increase with the age yielding significantly higher values for women. These effects are emphasized for moderate and severe dependence and for institutional care. Finally, we forecast the number of dependent persons until 2045. Our projections reveal an important increase in the future numbers. While we observe that the dependent population more than doubles over the 30-year horizon, we report significant cantonal differences. Our results are relevant to governments, practitioners and academics alike and help to better understand the factors affecting the demand of LTC and predicting future needs.


Long-term care Log-linear regression Prevalence rates Forecast 



Funding was provided by Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (CH) (grant no. 100018_169662) and the Swiss Insurance Association. Support from the Swiss Central Compensation Office for providing the data is kindly acknowledged.


  1. 1.
    Ai C, Norton EC (2008) A semiparametric derivative estimator in log transformation models. Econom J 11(3):538–553MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B (2012) Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet 380(9836):37–43CrossRefGoogle Scholar
  3. 3.
    Biessy G (2016) A semi-Markov model with pathologies for long-term care insurance, working paper, Université d’Évry Val d’EssonneGoogle Scholar
  4. 4.
    Black MA, Craig BA (2002) Estimating disease prevalence in the absence of a gold standard. Stat Med 21(18):2653–2669CrossRefGoogle Scholar
  5. 5.
    Bonsang E (2009) Does informal care from children to their elderly parents substitute for formal care in Europe? J Health Econ 28(1):143–154CrossRefGoogle Scholar
  6. 6.
    Brown J, Coe N, Finkelstein A (2007) Medicaid crowd-out of private long-term care insurance demand: evidence from the health and retirement survey, technical report August, National Bureau of Economic Research, Cambridge, MAGoogle Scholar
  7. 7.
    Callahan CM, Arling G, Tu W, Rosenman MB, Counsell SR, Stump TE, Hendrie HC (2012) Transitions in care for older adults with and without dementia. J Am Geriatr Soc 60(5):813–820CrossRefGoogle Scholar
  8. 8.
    Colombo F (2012) Typology of public coverage for long-term care in OECD countries. In: Costa-Font J, Courbage C (eds) Financing long-term care in Europe, chapter 2. Palgrave Macmillan, New York, pp 17–40CrossRefGoogle Scholar
  9. 9.
    Cook RD, Weisberg S (1983) Diagnostics for heteroscedasticity in regression. Biometrika 70(1):1–10MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cosandey J (2016) De Nouvelles Mesures pour les Soins des Personnes Agées, Avenir SuisseGoogle Scholar
  11. 11.
    Costa-Font J, Wittenberg R, Patxot C, Comas-Herrera A, Gori C, di Maio A, Pickard L, Pozzi A, Rothgang H (2008) Projecting long-term care expenditure in four European union member States: the influence of demographic scenarios. Soc Indic Res 86(2):303–321CrossRefGoogle Scholar
  12. 12.
    Courbage C, Montoliu-Montes G, Wagner J (2018) Informal care, long term-care insurance and intra-family moral hazard: empirical evidence from Southern Europe, working paper, University of LausanneGoogle Scholar
  13. 13.
    Courbage C, Zweifel P (2011) Two-sided intergenerational moral hazard, long-term care insurance, and nursing home use. J Risk Uncertain 43(1):65–80CrossRefGoogle Scholar
  14. 14.
    Crimmins EM, Kim JK, Solé-Auró A (2011) Gender differences in health: results from SHARE, ELSA and HRS. Eur J Public Health 21(1):81–91CrossRefGoogle Scholar
  15. 15.
    Czado C, Rudolph F (2002) Application of survival analysis methods to long-term care insurance. Insur Math Econ 31(3):395–413MathSciNetCrossRefGoogle Scholar
  16. 16.
    De Meijer C, Koopmanschap M, D’ Uva TB, van Doorslaer E (2011) Determinants of long-term care spending: age, time to death or disability? J Health Econ 30(2):425–438CrossRefGoogle Scholar
  17. 17.
    Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26MathSciNetCrossRefGoogle Scholar
  18. 18.
    Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Springer, BostonCrossRefGoogle Scholar
  19. 19.
    Eggink E, Woittiez I, Ras M (2016) Forecasting the use of elderly care: a static micro-simulation model. Eur J Health Econ 17(6):681–691CrossRefGoogle Scholar
  20. 20.
    El Bernoussi R, Rockinger M (2017) Besoin en Logements pour Personnes Agées en Suisse. Technical Report, LausanneGoogle Scholar
  21. 21.
    Eugster B, Lalive R, Steinhauer A, Zweimüller J (2011) The demand for social insurance: does culture matter? Econ J 121(556):413–448CrossRefGoogle Scholar
  22. 22.
    European Commission (2015) The 2015 ageing report: economic and budgetary projections for the 28 EU Member States (2013–2060), vol 3Google Scholar
  23. 23.
    Federal Assembly (2017) Loi Fédérale sur l’Assurance-Vieillesse et Survivants (LAVS) 831.10Google Scholar
  24. 24.
    Federal Statistical Office (1998) Deux Siècles d’Histoire Démographique Suisse. BerneGoogle Scholar
  25. 25.
    Federal Statistical Office (2015) Les Scénarios de l’Evolution de la Population de la Suisse 2015–2045. NeuchâtelGoogle Scholar
  26. 26.
    Federal Statistical Office (2017) Tables de Mortalité pour la Suisse 2008/2013. NeuchâtelGoogle Scholar
  27. 27.
    Fong JH (2017) Old-age frailty patterns and implications for long-term care programmes. Geneva Pap Risk Insur Issues Pract 42(1):114–128CrossRefGoogle Scholar
  28. 28.
    Fong JH, Sherris M, Yap J (2017) Forecasting disability: application of a frailty model. Scand Actuar J 2:125–147MathSciNetCrossRefGoogle Scholar
  29. 29.
    Fuino M, Wagner J (2018) Long-term care models and dependence probability tables by acuity level: new empirical evidence from Switzerland. Insur Math Econ 81(5):51–70MathSciNetCrossRefGoogle Scholar
  30. 30.
    Gentili E, Masiero G, Mazzonna F (2017) The role of culture in long-term care arrangement decisions. J Econ Behav Organ 143(2017):186–200CrossRefGoogle Scholar
  31. 31.
    Han L, Allore H, Murphy T, Gill T, Peduzzi P, Lin H (2013) Annals of epidemiology dynamics of functional aging based on latent-class trajectories of activities of daily living. Ann Epidemiol 23(2):87–92CrossRefGoogle Scholar
  32. 32.
    Karlsson M, Mayhew L, Plumb R, Rickayzen B (2006) Future costs for long-term care: cost projections for long-term care for older people in the United Kingdom. Health Policy 75(2):187–213CrossRefGoogle Scholar
  33. 33.
    Katz PR (2011) An international perspective on long term care: focus on nursing homes. J Am Med Dir Assoc 12(7):487–492CrossRefGoogle Scholar
  34. 34.
    Kwon H-S, Lee C-S, Hur J-S (2012) Projecting the cost of long-term care insurance in Korea. Asia Pacific J Risk Insur.
  35. 35.
    Le Corre P-Y (2012) Long-term care insurance: building a successful development. In: Costa-Font J, Courbage C (eds) Financing long-term care in Europe, chapter 4. Palgrave Macmillan, New York, pp 53–72Google Scholar
  36. 36.
    Lopes R (2011) Kolmogorov–Smirnov test. In: Costa-Font J, Courbage C (eds) International encyclopedia of statistical science. Springer, BerlinCrossRefGoogle Scholar
  37. 37.
    Lumley T, Diehr P, Emerson S, Chen L (2002) The importance of the normality assumption in large public health data sets. Annu Rev Public Health 23(1):151–169CrossRefGoogle Scholar
  38. 38.
    Manning WG (1998) The logged dependent variable, heteroscedasticity, and the retransformation problem. J Health Econ 17(3):283–295MathSciNetCrossRefGoogle Scholar
  39. 39.
    Manning WG, Mullahy J (2001) Estimating log models: to transform or not to transform? J Health Econ 20(4):461–494CrossRefGoogle Scholar
  40. 40.
    Marengoni A, Angleman S, Melis R, Mangialasche F, Karp A, Garmen A, Meinow B, Fratiglioni L (2011) Aging with multimorbidity: a systematic review of the literature. Ageing Res Rev 10(4):430–439CrossRefGoogle Scholar
  41. 41.
    Mathers C (1996) Trends in health expectancies in Australia 1981–1993. J Aust Popul Assoc 13(1):1–15Google Scholar
  42. 42.
    Mathers C, Vos T, Stevenson C (2001) The burden of disease and injury in Australia. World Health Organ 23(1):1076–1084Google Scholar
  43. 43.
    Meguro K, Tanaka N, Kasai M, Nakamura K, Ishikawa H, Nakatsuka M, Satoh M, Ouchi Y (2012) Prevalence of dementia and dementing diseases in the old–old population in Japan: the Kurihara project. Implications for long-term care insurance data. Psychogeriatrics 12(4):226–234CrossRefGoogle Scholar
  44. 44.
    Monod-Zorzi S, Seematter-Bagnoud L, Büla C, Pellegrini S, Jaccard Ruedin H (2007) Maladies Chroniques et Dépendance Fonctionnelle des Personnes Agées. Observatoire Suisse de la Santé, NeuchâtelGoogle Scholar
  45. 45.
    Nichols BL, Davis CR, Richardson DR (2010) An integrative review of global nursing workforce issues. Annu Rev Nurs Res 28:113–32CrossRefGoogle Scholar
  46. 46.
    OECD (2015) Health at a glance 2015. OECD Publishing, ParisGoogle Scholar
  47. 47.
    Ohri A (2012) R for business analytics. Springer, New YorkzbMATHGoogle Scholar
  48. 48.
    Pauly MV (1990) The rational nonpurchase of long-term-care insurance. J Political Econ 98(1):153–168CrossRefGoogle Scholar
  49. 49.
    Rockinger M, Wagner J (2016) Les Soins et la Dépendance: Un Risque Systémique, Le Temps, 28 JuneGoogle Scholar
  50. 50.
    Schünemann J, Strulik H, Trimborn T (2017) The gender gap in mortality: how much is explained by behavior? J Health Econ 54:79–90CrossRefGoogle Scholar
  51. 51.
    Stock JH, Watson MM (2012) Introduction to econometrics, 3rd edn. Pearson Education Limited, HarlowGoogle Scholar
  52. 52.
    Swiss Re (2014) How will we care? Finding sustainable long-term care solutions for an ageing world, sigma, no 5Google Scholar
  53. 53.
    Trevor B, Adrian P (1979) A simple test for heteroscedasticity and random coefficient variation. Econometrica 47(5):1287–1294MathSciNetCrossRefGoogle Scholar
  54. 54.
    United Nations (2016) Human development report 2016. United Nations Development Programme, New YorkGoogle Scholar
  55. 55.
    Weaver F (2012) Long-Term care financing in Switzerland. In: Costa-Font J, Courbage C (eds) Financing Long-Term Care in Europe, chapter 15. Palgrave Macmillan, New York, pp 279–299CrossRefGoogle Scholar
  56. 56.
    Wooldridge JM (2013) Introductory econometrics: a modern approach, 5th edn. Cengage LearningGoogle Scholar
  57. 57.
    World Health Organization (2014) Migration of health workers. WHO Document Production Services, GenevaGoogle Scholar
  58. 58.
    Xue Q-L (2011) The Frailty syndrome: definition and natural history. Clin Geriatr Med 27(1):1–15MathSciNetCrossRefGoogle Scholar
  59. 59.
    Yip AG, Brayne C, Matthews FE, MRC Cognitive Function and Ageing Study (2006) Risk factors for incident dementia in England and Wales: the medical research council cognitive function and ageing study. A population-based nested case–Control Study. Age Ageing 35(2):154–160Google Scholar
  60. 60.
    Zweifel P, Felder S, Werblow A (2004) Population ageing and health care expenditure: new evidence on the red herring. Geneva Pap Risk Insur Issues Pract 29(4):652–666CrossRefGoogle Scholar

Copyright information

© EAJ Association 2018

Authors and Affiliations

  1. 1.Department of Actuarial Science, Faculty of Business and EconomicsUniversity of LausanneLausanneSwitzerland
  2. 2.Swiss Finance InstituteUniversity of LausanneLausanneSwitzerland

Personalised recommendations