European Actuarial Journal

, Volume 7, Issue 1, pp 165–192 | Cite as

An asymptotic characterization of hidden tail credit risk with actuarial applications

Original Research Paper
  • 138 Downloads

Abstract

In this paper we study the tail risk of a properly diversified credit portfolio under a latent risk factor model. The usual perception is that if the diversification leads to asymptotic independence among the risk factors, then, because of the relatively low probability of simultaneous defaults, the tail risk of the entire portfolio is negligible. However, we point out that in fact there may be substantial tail risk hidden in this situation. We use a conditional tail probability of the portfolio loss to quantify the hidden tail risk, and then provide an asymptotic characterization for the risk under a hidden regular variation structure assumed for the risk factors. We also propose applications of the characterization to the determination and allocation of related insurance risk capital, based on the Conditional Tail Expectation risk measure. To understand the impact of dependence on the quantities of interest, we study two special cases where the risk factors have a Gaussian copula or an Archimedean copula. Numerical examples are provided to illustrate the results.

Keywords

Asymptotics Capital allocation Conditional Tail Expectation Copula Credit portfolio loss Hidden regular variation 

References

  1. 1.
    Asimit AV, Furman E, Tang Q, Vernic R (2011) Asymptotics for risk capital allocations based on conditional tail expectation. Insur Math Econ 49:310–324MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Asimit AV, Vernic R, Zitikis R (2013) Evaluating risk measures and capital allocations based on multi-losses driven by a heavy-tailed background risk: the multivariate Pareto-II model. Risks 1:14–33CrossRefGoogle Scholar
  3. 3.
    Charpentier A, Segers J (2009) Tails of multivariate Archimedean copulas. J Multivar Anal 100:1521–1537MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Coles S, Heffernan J, Tawn J (1999) Dependence measures for extreme value analyses. Extremes 2:339–365CrossRefMATHGoogle Scholar
  5. 5.
    Das B, Embrechts P, Fasen V (2013) Four theorems and a financial crisis. Int J Approx Reasoning 54:701–716MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Das B, Mitra A, Resnick SI (2013) Living on the multidimensional edge: seeking hidden risks using regular variation. Adv Appl Probab 45:139–163MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    de Haan L, Ferreira A (2006) Extreme value theory: an introduction. Springer, New YorkCrossRefMATHGoogle Scholar
  8. 8.
    Denuit M, Kiriliouk A, Segers J (2015) Max-factor individual risk models with application to credit portfolios. Insur Math Econ 62:162–172MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dhaene J, Tsanakas A, Valdez EA, Vanduffel S (2012) Optimal capital allocation principles. J Risk Insur 79:1–28CrossRefGoogle Scholar
  10. 10.
    Donnelly C, Embrechts P (2010) The devil is in the tails: actuarial mathematics and the subprime mortgage crisis. ASTIN Bull 40:1–33MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Duffie D, Eckner A, Horel G, Saita L (2009) Frailty correlated default. J Financ 64:2089–2123CrossRefGoogle Scholar
  12. 12.
    Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events for insurance and finance. Springer, BerlinCrossRefMATHGoogle Scholar
  13. 13.
    Fougères A, Mercadier C (2012) Risk measures and multivariate extensions of Breiman’s theorem. J Appl Probab 49:364–384MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Frees EW, Valdez EA (1998) Understanding relationships using copulas. N Am Actuar J 2:1–25MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Frey R, McNeil AJ (2003) Dependent defaults in models of portfolio credit risk. J Risk 6:59–92CrossRefGoogle Scholar
  16. 16.
    Furman E, Landsman Z (2005) Risk capital decomposition for a multivariate dependent gamma portfolio. Insur Math Econ 37:635–649MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Furman E, Landsman Z (2008) Economic capital allocations for non-negative portfolios of dependent risks. ASTIN Bull 38:601–619MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Furman E, Zitikis R (2008) Weighted risk capital allocations. Insur Math Econ 43:263–269MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gabaix X (2009) Power laws in economics and nance. Annu Rev Econ 1:255–293CrossRefGoogle Scholar
  20. 20.
    Genest C, Nešlehová J (2007) A primer on copulas for count data. ASTIN Bull 37:475–515MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Giesecke K (2004) Correlated default with incomplete information. J Bank Financ 28:1521–1545CrossRefGoogle Scholar
  22. 22.
    Glasserman P, Li J (2005) Importance sampling for portfolio credit risk. Manag Sci 51:1643–1656CrossRefMATHGoogle Scholar
  23. 23.
    Gupton GM, Finger CC, Bhatia M (1997) CreditMetrics\(^{\rm TM}\)—technical document. Technical report. J. P. Morgan & Co., New YorkGoogle Scholar
  24. 24.
    Hao X, Li X (2015) Pricing credit default swaps with a random recovery rate by a double inverse Fourier transform. Insur Math Econ 65:103–110MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Hashorva E (2005) Asymptotics and bounds for multivariate Gaussian tails. J Theor Probab 18:79–97MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Hashorva E, Hüsler J (2002) On asymptotics of multivariate integrals with applications to records. Stochas Models 18:41–69MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Hashorva E, Hüsler J (2003) On multivariate Gaussian tails. Ann Inst Stat Math 55:507–522MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Heffernan JE (2000) A directory of coefficients of tail dependence. Extremes 3:279–290MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Hua L, Joe H (2011) Tail order and intermediate tail dependence of multivariate copulas. J Multivar Anal 102:1454–1471MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Hua L, Joe H, Li H (2014) Relations between hidden regular variation and tail order of copulas. J Appl Probab 51:37–57MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Joe H (2015) Dependence modeling with copulas. CRC Press, Boca Raton, FLMATHGoogle Scholar
  32. 32.
    Kim JHT, Hardy MR (2009) A capital allocation based on a solvency exchange option. Insur Math Econ 44:357–366MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Kimberling CH (1974) A probabilistic interpretation of complete monotonicity. Aequ Math 10:152–164MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Kiriliouk A, Segers J, Warchoł M (2015) Nonparametric estimation of extremal dependence. In: Dey DK, Yan J (eds) Extreme value modeling and risk analysis: methods and applications, Chapman & Hall/CRC, Boca Raton, FL, pp 367–389Google Scholar
  35. 35.
    Ledford AW, Tawn JA (1996) Statistics for near independence in multivariate extreme values. Biometrika 83:169–187MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Ledford AW, Tawn JA (1997) Modelling dependence within joint tail regions. J R Stat Soc B 59:475–499MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Manner H, Segers J (2011) Tails of correlation mixtures of elliptical copulas. Insur Math Econ 48:153–160MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    McNeil AJ, Frey R, Embrechts P (2015) Quantitative risk management. Princeton University Press, PrincetonMATHGoogle Scholar
  39. 39.
    McNeil AJ, Nešlehová J (2009) Multivariate Archimedean copulas, \(d\)-monotone functions and \(l_{1}\)-norm symmetric distributions. Ann Stat 37:3059–3097CrossRefMATHGoogle Scholar
  40. 40.
    Mitra A, Resnick SI (2011) Hidden regular variation and detection of hidden risks. Stochas Models 27:591–614MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Malov SV (2001) On finite-dimensional Archimedean copulas. In: Balakrishnan N, Ibragimov IA, Nevzorov VB (eds), Asymptotic methods in probability and statistics with applications. Birkhäuser, Boston, MA, pp 19–35Google Scholar
  42. 42.
    Myers SC, Read Jr JA (2001) Capital allocation for insurance companies. J Risk Insur 68:545–580CrossRefGoogle Scholar
  43. 43.
    Qi M, Zhao X (2011) Comparison of modeling methods for loss given default. J Bank Financ 35:2842–2855CrossRefGoogle Scholar
  44. 44.
    Ratovomirija G (2016) On mixed Erlang reinsurance risk: aggregation, capital allocation and default risk. Eur Actuar J 6:149–175MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Resnick SI (1987) Extreme values, regular variation, and point processes. Springer, New YorkCrossRefMATHGoogle Scholar
  46. 46.
    Resnick SI (2002) Hidden regular variation, second order regular variation and asymptotic independence. Extremes 5:303–336MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Resnick SI (2007) Heavy-tail phenomena, probabilistic and statistical modeling. Springer, New YorkMATHGoogle Scholar
  48. 48.
    Savage IR (1962) Mill’s ratio for multivariate normal distributions. J Res Natl Bureau Stand Sect B Math Sci 66:93–96CrossRefMATHGoogle Scholar
  49. 49.
    Scherer M, Schmid L, Schmidt T (2012) Shot-noise driven multivariate default models. Eur Actuar J 2:161–186MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Scott A, Metzler A (2015) A general importance sampling algorithm for estimating portfolio loss probabilities in linear factor models. Insur Math Econ 64:279–293MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Shi X, Tang Q, Yuan Z (2017) A limit distribution of credit portfolio losses with low default probabilities. Insur Math Econ 73:156–167MathSciNetCrossRefGoogle Scholar
  52. 52.
    Tang Q, Yuan Z (2013) Asymptotic analysis of the loss given default in the presence of multivariate regular variation. N Am Actuar J 17:253–271MathSciNetCrossRefGoogle Scholar
  53. 53.
    Tankov P (2016) Tails of weakly dependent random vectors. J Multivar Anal 145:73–86MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Wang R, Peng L, Yang J (2015) CreditRisk+ model with dependent risk factors. N Am Actuar J 19:24–40MathSciNetCrossRefGoogle Scholar
  55. 55.
    Wei L, Yuan Z (2016) The loss given default of a low-default portfolio with weak contagion. Insur Math Econ 66:113–123MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© EAJ Association 2017

Authors and Affiliations

  1. 1.Department of Risk Management, Smeal College of BusinessThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations