European Actuarial Journal

, Volume 7, Issue 1, pp 1–28 | Cite as

Market inconsistencies of market-consistent European life insurance economic valuations: pitfalls and practical solutions

  • Julien Vedani
  • Nicole El Karoui
  • Stéphane Loisel
  • Jean-Luc Prigent
Original Research Paper

Abstract

The Solvency II directive has introduced a specific so-called risk-neutral framework to valuate economic accounting quantities throughout European life insurance companies. The adaptation of this theoretical notion for regulatory purposes requires the addition of a specific criterion, namely market-consistency, in order to objectify the choice of the valuation probability measure. This paper points out and fixes some of the major risk sources embedded in the current regulatory life insurance valuation scheme. We compare actuarial and financial valuation schemes. We then first address operational issues and potential market manipulation sources in life insurance, induced by both theoretical and regulatory pitfalls. For example, we show that the economic own funds of a representative French life insurance company can vary by almost 140%, as already observed by market practitioners, when the interest rate model is calibrated in October or on the 31st of December. We then propose various modifications of the current implementation, including a first product-specific valuation scheme, to limit the impact of these market-inconsistencies.

Keywords

Risk-neutral valuation Economic valuation Market-consistency European regulation Life insurance 

Notes

Acknowledgements

The authors acknowledge support from the ANR Project LoLitA (Dynamic Population Models for Human Longevity with Lifestyle Adjustments), the research chair Actuariat Durable sponsored by Milliman Paris, the research chair DAMI (Data Analytics and Models for Insurance) sponsored by BNP Paribas Cardif, and the research chair Risques Financiers sponsored by Société Générale.

References

  1. 1.
    Abrantes-Metz RM, Kraten M, Metz AD, Seow GS (2012) LIBOR manipulation? J Bank Financ 36(1):136–150CrossRefGoogle Scholar
  2. 2.
    Abrantes-Metz RM, Villas-Boas SB, Judge G (2011) Tracking the LIBOR rate. Appl Econ Lett 18(10):893–899CrossRefGoogle Scholar
  3. 3.
    Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Political Econ 81(3):637–654MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bonnin F, Planchet F, Juillard M (2014) Best estimate calculations of savings contracts by closed formulas: application to the ORSA. Eur Actuar J 4(1):181–196MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Brigo D, Mercurio F (2006) Interest rate models-theory and practice: with smile, inflation and credit, vol. 2. SpringerGoogle Scholar
  6. 6.
    CFO Forum (2009) Market consistent embedded value principles. http://www.cfoforum.nl/downloads/MCEV_Principles_and_Guidance_October_2009.pdf. Accessed 26 June 2016
  7. 7.
    Chen H, Singal V (2003) A december effect with tax-gain selling? Financ Anal J 59(4):78–90CrossRefGoogle Scholar
  8. 8.
    Christensen JH, Diebold FX, Rudebusch GD (2009) An arbitrage-free generalized Nelson-Siegel term structure model. Econom J 12(3):C33–C64MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Christensen JH, Diebold FX, Rudebusch GD (2011) The affine arbitrage-free class of Nelson–Siegel term structure models. J Econom 164(1):4–20MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Coroneo L, Nyholm K, Vidova-Koleva R (2011) How arbitrage-free is the Nelson–Siegel model? J Empir Financ 18(3):393–407CrossRefGoogle Scholar
  11. 11.
    Danielsson J, Jong F, Laux C, Laeven R, Perotti E, Wüthrich M (2011) A prudential regulatory issue at the heart of Solvency II. VOX policy noteGoogle Scholar
  12. 12.
    Delcour IG (2012) On the use of risk-free rates in the discounting of insurance cash flows, PhD thesis, Katholieke Universiteit LeuvenGoogle Scholar
  13. 13.
    Devineau L, Loisel S (2009) Construction d’un algorithme d’accélération de la méthode des “simulations dans les simulations” pour le calcul du capital économique Solvabilité II. Bull Franç d’Actuar 10(17):188–221Google Scholar
  14. 14.
    Dybvig PH, Ingersoll JE Jr, Ross SA (1996) Long forward and zero-coupon rates can never fall. J Bus 69(1):1–25CrossRefGoogle Scholar
  15. 15.
    EIOPA (2010) Quantitative impact study 5—technical specificationsGoogle Scholar
  16. 16.
    EIOPA (2016) Technical documentation of the methodology to derive EIOPA’s risk free interest rate term structures. https://eiopa.europa.eu/regulation-supervision/insurance/solvency-ii-technical-information/risk-free-interest-rate-term-structures. Accessed 26 June 2016
  17. 17.
    El Karoui N, Frachot A, Geman H (1997) On the behavior of long zero coupon rates in a no arbitrage framework. Rev Derivativ Res 1:351–370Google Scholar
  18. 18.
    Floreani A (2011) Risk margin estimation through the cost of capital approach: some conceptual issues. Geneva Pap Risk Insur Issues Pract 36(2):226–253CrossRefGoogle Scholar
  19. 19.
    Glasserman P (2004) Monte Carlo methods in financial engineering. SpringerGoogle Scholar
  20. 20.
    Hirt GA, Block SB (2006) Fundamentals of investment management. McGraw HillGoogle Scholar
  21. 21.
    Hull JC, White A (2000) Forward rate volatilities, swap rate volatilities, and the implementation of the LIBOR Market Model. J Fixed Income 10(2):46–62CrossRefGoogle Scholar
  22. 22.
    Kemp M (2009) Market consistency: model calibration in imperfect markets. WileyGoogle Scholar
  23. 23.
    Kreps DM (1981) Arbitrage and equilibrium in economies with infinitely many commodities. J Math Econ 8(1):15–35MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kroese DP, Taimre T, Botev ZI (2013) Handbook of Monte Carlo methods. WileyGoogle Scholar
  25. 25.
    Lakonishok J, Smidt S (1988) Are seasonal anomalies real? A ninety-year perspective. Rev Financ Stud 1(4):403–425CrossRefGoogle Scholar
  26. 26.
    Malamud S, Trubowitz E, Wüthrich MV (2008) Market consistent pricing of insurance products. ASTIN Bull 38(2):483MathSciNetMATHGoogle Scholar
  27. 27.
    Markowitz H (1952) Portfolio selection. J Financ 7(1):77–91Google Scholar
  28. 28.
    Martin P, Rey H (2004) Financial super-markets: size matters for asset trade. J Int Econ 64(2):335–361MathSciNetCrossRefGoogle Scholar
  29. 29.
    Merton RC (1973) Theory of rational option pricing. Bell Jo Econ Manag Sci 4(1):141–183MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Moehr C (2011) Market-consistent valuation of insurance liabilities by cost of capital. ASTIN Bull 41(2):315–341MathSciNetMATHGoogle Scholar
  31. 31.
    Mukerji S, Tallon J-M (2001) Ambiguity aversion and incompleteness of financial markets. Rev Econ Stud 68(4):883–904MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Rebonato R (1999) On the simultaneous calibration of multi-factor log-normal interest-rates models to Black volatilities and to the correlation matrix. J Comput Financ 2:5–27CrossRefGoogle Scholar
  33. 33.
    Schubert T, Grießmann G (2004) Solvency II = Basel II+ X. Versicherungswirtschaft 18:1399–1402Google Scholar
  34. 34.
    Sheldon TJ, Smith AD (2004) Market consistent valuation of life assurance business. Br Actuar J 10(3):543–605CrossRefGoogle Scholar
  35. 35.
    Söderlind P, Svensson L (1997) New techniques to extract market expectations from financial instruments. J Monet Econ 40(2):383–429CrossRefGoogle Scholar
  36. 36.
    Sum V (2010) The january and size effects on stock returns: more evidence. Int J Appl Account Financ 1(1):47–52MathSciNetGoogle Scholar
  37. 37.
    Turc J, Ungari S (2009) Filtering the interest rate curve, the MENIR framework. Soc Gen Cross Asset ResGoogle Scholar
  38. 38.
    Vedani J, Devineau L (2013) Solvency assessment within the ORSA framework: issues and quantitative methodologies. Bull Franç d’Actuar 13(25):35–71Google Scholar
  39. 39.
    Wüthrich M V, Bühlmann H, Furrer H (2008) Market-consistent actuarial valuation. SpringerGoogle Scholar

Copyright information

© EAJ Association 2017

Authors and Affiliations

  • Julien Vedani
    • 1
  • Nicole El Karoui
    • 2
  • Stéphane Loisel
    • 1
  • Jean-Luc Prigent
    • 3
  1. 1.Laboratoire de Science Actuarielle et Financière EA2429Univ Lyon, Université Claude Bernard Lyon 1LyonFrance
  2. 2.Laboratoire de Probabilité et Modèles Aléatoires, and Ecole Polytechnique, Centre de Mathématiques APpliquéesUniversité Pierre et Marie Curie - Paris 6ParisFrance
  3. 3.Laboratoire de Théorie Économique, Modélisation et Applications, LabeX MME-DIIUniversité de Cergy-PontoiseCergy-PontoiseFrance

Personalised recommendations