Skip to main content
Log in

Lévy systems and the time value of ruin for Markov additive processes

  • Original Research Paper
  • Published:
European Actuarial Journal Aims and scope Submit manuscript

Abstract

In this paper we study the ruin problem for an insurance risk process driven by a spectrally-positive Markov additive process. Particular attention is given to the family of spectrally-positive Markov-modulated Lévy processes. We give an expression for the expected discounted penalty function by extending results available in the literature. In particular, we generalize some results in Biffis and Kyprianou (Insur Math Econ 46:85–91, 2010) to a more general setting provided by the theory of Markov additive processes. This natural extension is possible thanks to the concept of Lévy systems that allows us to generalize well-known results for Lévy processes to a larger family of Markov additive processes. We also discuss how more compact expressions for the expected discounted penalty function can be obtained using the notion of scale matrix of a Markov additive process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asmussen S (2003) Applied probability and queues, 2nd edn. Springer, Berlin

    Google Scholar 

  2. Asmussen S, Albrecher H (2010) Ruin probabilities. World Scientific Publishing, London

    Book  MATH  Google Scholar 

  3. Benveniste A, Jacod J (1973) Système de Lévy des processus de Markov. Invent Math 21:183–198

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertoin J (1996) Lévy processes. Cambridge University Press, Cambridge

  5. Breuer L (2008) First passage times for Markov additive-processes with positive jumps of phase-type. J Appl Prob 45(3):779–799

    Article  MathSciNet  MATH  Google Scholar 

  6. Breuer L (2010) A quintuple law for Markov additive processes with phase-type jumps. J Appl Prob 47(2):441–458

    Article  MathSciNet  MATH  Google Scholar 

  7. Biffis E, Kyprianou A (2010) A note on scale function and the time value of ruin. Insur Math Econ 46:85–91

    Article  MathSciNet  MATH  Google Scholar 

  8. Biffis E, Morales M (2010) On a generalization of the Gerber–Shiu function to path-dependent penalties. Insur Math Econ 46:92–97

    Article  MathSciNet  MATH  Google Scholar 

  9. Cont R, Tankov P (2004) Stochatic process with jumps. Chapman & Hall, Sydney

  10. Çinlar E (1972) Markov additive processes: I. Wahrscheinlichkeitstheorie u Verw Geb 24(2):85–93

    Article  MATH  Google Scholar 

  11. Çinlar E (1972) Markov additive processes: II. Wahrscheinlichkeitstheorie u Verw Geb 24(2):95–121

    Article  MATH  Google Scholar 

  12. Çinlar E (1975) Lévy systems for Markov additive processes. Wahrscheinlichkeitstheorie u Verw Geb 31:175–185

    Article  MATH  Google Scholar 

  13. Doney R, Kyprianou A (2006) Overshoots and undershoots of Lévy processes. Ann Appl Probab 16(1):91–106

    Article  MathSciNet  MATH  Google Scholar 

  14. El-Maati O (2005) Analysis of heat equations on domains. Princeton University Press, Princeton

  15. Grigelionis B (1978) Additive Markov processes. Liet Mat Rinkinys 18(3):43–47

    MathSciNet  MATH  Google Scholar 

  16. Gerber H, Shiu E (1998) On the time value of ruin. North Am Actuar J 2(1):48–78

    MathSciNet  MATH  Google Scholar 

  17. Itô K (2004) Stochastic processes. Springer, Berlin

    MATH  Google Scholar 

  18. Ivanovs P, Palmowski Z (2011) Occupation densities in solving exit problems for Markov additive processes and their reflections. Stoch Process Appl. doi:10.1016/j.spa.2012.05.016

  19. Klusik P, Palmowski Z (2011) A note on Weiner–Hopf factorisation for Markov additive processes. J Theor Probab. doi:10.1007/s10959-012-0425-4

  20. Kyprianou A (2006) Introductory lectures on Lévy processes with applications. Universitext, Springer, Berlin

  21. Kyprianou A, Kuznetsov A, Rivero V (2011) The theory of scale functions for spectrally negative Lévy processes. Lévy matters II, Springer lecture notes in mathematics

  22. Kyprianou A, Palmowski Z (2008) Fluctuations of spectrally negative Markov additive process. Sém de Probab XLI:121–135

    MathSciNet  Google Scholar 

  23. Maisonneuve B (1977) Changement de temps d’un processus markovien additif. Sém de Probab XI:529–538

    MathSciNet  Google Scholar 

  24. Momeya RH, Ben Salah Z (2012) The minimal entropy martingale measure (MEMM) for a Markov-modulated exponential Lévy model. Asia Pac Financial Markets 19(1):63–98

    Article  MATH  Google Scholar 

  25. Palmowski Z, Rolski T (2002) Fluctuations of spectrally negative Markov additive process. Bernoulli 8(6):767–785

    MathSciNet  MATH  Google Scholar 

  26. Watanabe S (1964) On discontinuous additive functionals and Lévy measures of Markov process. Jpn J Math 34:53–70

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for a careful reading of the manuscript and for their comments and suggestions that helped us improve the paper substantially. This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) operating Grant RGPIN-311660 and by the Mathematical Sciences Network of Excellence MPRIME. Zied Ben Salah acknowledges financial support from the Tunisian government via the Ph.D. fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Morales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Salah, Z., Morales, M. Lévy systems and the time value of ruin for Markov additive processes. Eur. Actuar. J. 2, 289–317 (2012). https://doi.org/10.1007/s13385-012-0053-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13385-012-0053-5

Keywords

Navigation