Skip to main content
Log in

HOBi-CGSTAB and HOBi-CRSTAB methods for solving some tensor equations

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

Recently, solving tensor equations (or multilinear systems) has attracted a lot of attention. This paper investigates the tensor form of the Bi-CGSTAB and Bi-CRSTAB methods, by employing Kronecker product, vectorization, and bilinear operator, to solve the generalized coupled Sylvester tensor equations \(\sum _{i=1}^{n}({\mathcal {X}}\times _1A_{i1}\times _2A_{i2}+\mathcal Y\times _1B_{i1}\times _2B_{i2})={\mathcal {E}}_1,~\sum _{i=1}^{n}(\mathcal X\times _1C_{i1}\times _2C_{i2}+\mathcal Y\times _1D_{i1}\times _2D_{i2})={\mathcal {E}}_2,\) with no matricization. Also some properties of the new methods are presented. By applying multilinear operator, the proposed methods are extended to the general form. Some numerical examples are provided to compare the efficiency of the investigated methods with some existing popular algorithms. Finally, some concluding remarks are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. Abe, K., Sleijpen, G.L.G.: Bi-CR variants of the hybrid Bi-CG methods for solving linear systems with nonsymmetric matrices. J. Comput. Appl. Math. 234(4), 985–994 (2010)

    MathSciNet  Google Scholar 

  2. Bader, B.W., Kolda, T.G.: Matlab tensor toolbox, version 2.6. https://www.tensortoolbox.org (2010)

  3. Bai, Z.Z., Golub, G.H., NG, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2003)

    MathSciNet  Google Scholar 

  4. Behera, R., Mishra, D.: Further results on generalized inverses of tensors via the Einstein product. Linear Multilinear Algebra 65, 1662–1682 (2017)

    MathSciNet  Google Scholar 

  5. Beik, F.P.A., Saberi Movahed, S., Ahmadi Asl, A.: On the Krylov subspace methods based on tensor format for positive definite Sylvester tensor equations. Linear Algebra Appl. 23, 444–466 (2016)

    MathSciNet  Google Scholar 

  6. Brazell, M., Li, N., Navasca, C., Tamon, C.: Solving multilinear systems via tensor inversion. SIAM. J. Matrix. Anal. Appl. 34(2), 542–570 (2013)

    MathSciNet  Google Scholar 

  7. Bu, C., Zhang, X., Zhou, J., et al.: The inverse, rank and product of tensors. Linear Algebra Appl. 446, 269–280 (2014)

    MathSciNet  Google Scholar 

  8. Chen, Z., Lu, L.: A gradient based iterative solutions for Sylvester tensor equations. Math. Probl. Eng. (2013). https://doi.org/10.1155/2013/819479

    Article  MathSciNet  Google Scholar 

  9. Chen, Z., Lu, L.Z.: A projection method and Kronecker product preconditioner for solving Sylvester tensor equations. Sci. China Math. 55(6), 1281–1292 (2012)

    MathSciNet  Google Scholar 

  10. Chen, H., Wang, Y.: A family of higher-order convergent iterative methods for computing the Moore–Penrose inverse. Appl. Math. Comput. 218, 4012–4016 (2011)

    MathSciNet  Google Scholar 

  11. Dehdezi, E.K., Karimi, S.: Extended conjugate gradient squared and conjugate residual squared methods for solving the generalized coupled Sylvester tensor equations. Trans. Inst. Meas. Control 43(3), 519–527 (2021)

    Google Scholar 

  12. Dehdezi, E.K., Karimi, S.: A fast and efficient Newton–Shultz-type iterative method for computing inverse and Moore–Penrose inverse of tensors. J. Math. Model. 9(4), 645–664 (2021)

    MathSciNet  Google Scholar 

  13. Dehdezi, E.K.: Iterative methods for solving Sylvester transpose tensor equation \({\cal{A} }*_{N}{\cal{X} }*_M{\cal{B} }+{\cal{C} }*_M{\cal{X} }^{ T}*_N{\cal{D} }={\cal{E} }\). Oper. Res. Forum 2(4), 1–21 (2021)

    Google Scholar 

  14. Dehdezi, E.K., Karimi, S.: A gradient based iterative method and associated preconditioning technique for solving the large multilinear systems. Calcolo 58(4), 1–19 (2021)

    MathSciNet  Google Scholar 

  15. Dehdezi, E.K., Karimi, S.: A rapid and powerful iterative method for computing inverses of sparse tensors with applications. Appl. Math. Comput. 415, 126720 (2022)

    MathSciNet  Google Scholar 

  16. Dehdezi, E.K., Karimi, S.: GIBS: a general and efficient iterative method for computing the approximate inverse and Moore–Penrose inverse of sparse matrices based on the Shultz iterative method with applications. Linear Multilinear Algebra 71(12), 1905–1921 (2023)

    MathSciNet  Google Scholar 

  17. Dehdezi, E.K., Karimi, S.: On finding strong approximate inverses for tensors. Numer. Linear Algebra Appl. 30(1), e2460 (2023)

    MathSciNet  Google Scholar 

  18. Dehghan, M., Hajarian, M.: Iterative algorithms for the generalized centro-symmetric and central anti-symmetric solutions of general coupled matrix equation. Eng. Comput. 29, 528–560 (2012)

    Google Scholar 

  19. Ding, F., Chen, T.: Gradient based iterative algorithms for solving a class of matrix equations. IEEE Trans. Autom. Control 50(8), 1216–1221 (2005)

    MathSciNet  Google Scholar 

  20. Ding, F., Chen, T.: Iterative least squares solutions of coupled Sylvester matrix equations. Syst. Control Lett. 54(2), 95–107 (2005)

    MathSciNet  Google Scholar 

  21. Drazin, M.P.: A class of outer generalized inverses. Linear Algebra Appl. 436, 1909–1923 (2014)

    MathSciNet  Google Scholar 

  22. Golub, G.H., Nash, S., Van Loan, C.: A Hessenberg–Schur method for the problem \(AX + XB = C\). IEEE Trans. Autom. Control 24(6), 909–913 (1978)

    MathSciNet  Google Scholar 

  23. Grasedyck, L.: Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure. Computing 72(3–4), 247–265 (2004)

    MathSciNet  Google Scholar 

  24. Hajarian, M.: Lanczos version of BCR algorithm for solving the generalised second-order Sylvester matrix equation \(eVF + gVH + bVC = dWE + m\). IET Control Theory Appl. 11(2), 273–281 (2017)

    MathSciNet  Google Scholar 

  25. Hajarian, M.: Matrix form of the Bi-CGSTAB method for solving the coupled Sylvester matrix equations. IET Control Theory Appl. 7, 1828–1833 (2013)

    MathSciNet  Google Scholar 

  26. Hajarian, M.: Matrix form of the CGS method for solving general coupled matrix equations. Appl. Math. Lett. 34(1), 37–42 (2014)

    MathSciNet  Google Scholar 

  27. Huang, B., Ma, C.F.: An iterative algorithm to solve the generalized Sylvester tensor equations. Linear Multilinear Algebra 68(6), 1175–1200 (2018)

    MathSciNet  Google Scholar 

  28. Ji, J., Wei, Y.: Weighted Moore–Penrose inverses and fundamental theorem of even-order tensors with Einstein product. Front. Math. China 12, 1319–1337 (2017)

    MathSciNet  Google Scholar 

  29. Ji, J., Wei, Y.: The Drazin inverse of an even-order tensor and its application to singular tensor equations. Comput. Math. Appl. 75(9), 3402–3413 (2018)

    MathSciNet  Google Scholar 

  30. Jin, H., Bai, M., Benítez, J., et al.: The generalized inverses of tensors and an application to linear models. Comput. Math. Appl. 74, 385–397 (2017)

    MathSciNet  Google Scholar 

  31. Karimi, S., Dehghan, M.: Global least squares method based on tensor form to solve linear systems in Kronecker format. Trans. Inst. Meas. Control 40(7), 2378–2386 (2018)

    Google Scholar 

  32. Karimi, S., Dehdezi E.K.: Tensor splitting preconditioners for multilinear systems, J. Math. Model. (in press)

  33. Kolda, T.G.: Multilinear operators for higher-order decompositions. Tech. Report SAND. 2006-2081 (2006)

  34. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    ADS  MathSciNet  Google Scholar 

  35. Li, B.W., Tian, S., Sun, Y.S., Hu, Z.M.: Schur-decomposition for 3D matrix equations and its application in solving radiative discrete ordinates equations discretized by Chebyshev collocation spectral method. J. Comput. Phys. 229(4), 1198–1212 (2010)

    ADS  MathSciNet  CAS  Google Scholar 

  36. Liang, K.F., Liu, J.Z.: Iterative algorithms for the minimum-norm solution and the least-squares solution of the linear matrix equations \(A_1XB_1+C_1X^{{ T} D_1 = M_1,~A_2XB_2+C_2X^{ T}}D_2=M_2\). Appl. Math. Comput. 218, 3166–3175 (2011)

    MathSciNet  Google Scholar 

  37. Liang, M., Zheng, B., Zhao, R.: Tensor inversion and its application to the tensor equations with Einstein product. Linear Multilinear Algebra 67(4), 843–870 (2019)

    MathSciNet  Google Scholar 

  38. Lv, C., Ma, C.: A modified CG algorithm for solving generalized coupled Sylvester tensor equations. Appl. Math. Comput. 365, 124699 (2020)

    MathSciNet  Google Scholar 

  39. Ma, H., Li, N., Stanimirović, P.S., Katsikis, V.N.: Perturbation theory for Moore-Penrose inverse of tensor via Einstein product. Comput. Appl. Math. 38(3), 111 (2019)

    MathSciNet  Google Scholar 

  40. Miao, Y., Qi, L., Wei, Y.: Generalized tensor function via the tensor singular value decomposition based on the T-product. Linear Algebra Appl. 590, 258–303 (2020)

    MathSciNet  Google Scholar 

  41. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982)

    MathSciNet  Google Scholar 

  42. Panigrahy, K., Mishra, D.: Reverse order law for weighted Moore–Penrose inverses of tensors. Adv. Oper. Theory 5(1), 39–63 (2020)

    MathSciNet  Google Scholar 

  43. Panigrahy, K., Mishra, D.: Extension the Moore–Penrose inverse of a tensor via the Einstein product. Linear Multilinear Algebra 70(4), 750–773 (2022)

    MathSciNet  Google Scholar 

  44. Panigrahy, K., Behera, R., Mishra, D.: Reverse-order law for the Moore–Penrose inverses of tensors. Linear Multilinear Algebra 68(2), 246–264 (2020)

    MathSciNet  Google Scholar 

  45. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Google Scholar 

  46. Shi, X., Wei, Y., Ling, S.: Backward error and perturbation bounds for high order Sylvester tensor equation. Linear Multilinear Algebra 61(10), 1436–1446 (2013)

    MathSciNet  Google Scholar 

  47. Stanimirović, P.S., Ćirić, M., Katsikis, V.N., Li, C., Ma, H.: Outer and (b, c) inverses of tensors. Linear Multilinear Algebra 68(5), 940–971 (2020)

    MathSciNet  Google Scholar 

  48. Sun, L., Zheng, B., Bu, C., Wei, Y.: Moore–Penrose inverse of tensors via Einstein product. Linear Multilinear Algebra 64, 686–698 (2016)

    MathSciNet  Google Scholar 

  49. Sun, L., Zheng, B., Wei, Y., et al.: Generalized inverses of tensors via a general product of tensors. Front. Math. China 13, 893–911 (2018)

    MathSciNet  Google Scholar 

  50. Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    MathSciNet  Google Scholar 

  51. Xie, Y., Huang, N., Ma, C.: Iterative method to solve the generalized coupled Sylvester-transpose linear matrix equations over reflexive or anti-reflexive matrix. Comput. Math. Appl. 67, 2071–2084 (2014)

    MathSciNet  Google Scholar 

  52. Xu, X., Wang, Q.W.: Extending Bi-CG and Bi-CR methods to solve the Stein tensor equation. Comput. Math. Appl. 77(12), 3117–3127 (2019)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eisa Khosravi Dehdezi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehdezi, E.K. HOBi-CGSTAB and HOBi-CRSTAB methods for solving some tensor equations. Afr. Mat. 35, 14 (2024). https://doi.org/10.1007/s13370-023-01155-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13370-023-01155-4

Keywords

Mathematics Subject Classification

Navigation