Skip to main content
Log in

A trigonometrically fitted intra-step block Falkner method for the direct integration of second-order delay differential equations with oscillatory solutions

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

An intra-step block Falkner method whose coefficients depend on a parameter \(\omega \) and the step length h is presented in this study for solving numerically second-order delay differential equations with oscillatory solutions. In the development of the method, the collocation and interpolation techniques were employed. The investigation of the properties of the method has shown that it is zero-stable and consistent, and consequently, convergent. The application of the method to some standard problems from the scientific literature show that it produced very accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rasdi, N., Majid, Z.A., Ismail, F., Senu, N., Phang, P., Radzi, H.M.: Solving second order delay differential equations by direct two and three point one-step block method. Appl. Math. Sci. 7(54), 2647–2660 (2013)

    MathSciNet  Google Scholar 

  2. Abdulganiy, R.I., Akinfenwa, O.A., Enobabor, O.E., Orji, B.I., Okunuga, S.A.: Computation of first order delay differential equations via Simpson block method. FUOYE J. Eng. Technol. 5(2), 43–47 (2020)

    Article  Google Scholar 

  3. Ahmad, S.Z., Ismail, F., Senu, N.: Solving oscillatory delay differential equations using block hybrid methods. J. Math. 2018, 1–7 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Khader, M.: Numerical and theoretical treatment for solving linear and nonlinear delay differential equations using variational iteration method. Arab J. Math. Sci. 19(2), 243–256 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Ogunfiditimi, F.: Numerical solution of delay differential equations using the Adomian decomposition method (adm). Int. J. Eng. Sci. 4(5), 18–23 (2015)

    Google Scholar 

  6. Ismail, F., Al-Khasawneh, R. A., Suleiman, M., et al.: Numerical treatment of delay differential equations by Runge-Kutta method using hermite interpolation. Matematika Malays. J. Ind. Appl. Math. 18, 79–90 (2002)

    Google Scholar 

  7. Yap, L., Ismail, F.: Block hybrid-like method for solving delay differential equations. In: AIP Conf. Proc. 1660, 050030-1-050030-7. https://doi.org/10.1063/1.4915663

  8. Majid, Z.A., Radzi, H., Ismail, F.: Solving delay differential equations by the five-point one-step block method using Neville’s interpolation. Int. J. Comput. Math. 90(7), 1459–1470 (2013)

    Article  MATH  Google Scholar 

  9. Akinfenwa, O., R I, A., Okunuga, S., Obinna, U.: A p-stable linear multistep method for solving stiff delay differential equations. UNILAG J. Med. Sci. Technol. 5(2), 1–12 (2017)

    Google Scholar 

  10. Papageorgiou, G., Famelis, I.T.: On using explicit Runge–Kutta–Nyström methods for the treatment of retarded differential equations with periodic solutions. Appl. Math. Comput. 102(1), 63–76 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Seong, H.Y., Majid, Z.A.: Solving second order delay differential equations using direct two-point block method. Ain Shams Eng. J. 8(1), 59–66 (2017)

    Article  Google Scholar 

  12. El-Safty, A.: Approximate solution of the delay differential equation \(y^{\prime \prime }=f(x,y(x),\alpha (x))\) with cubic spline functions. Bull. Fac. Sci. Assuit Univ. 22(1), 993 (1993)

    MATH  Google Scholar 

  13. Evans, D.J., Raslan, K.: The Adomian decomposition method for solving delay differential equation. Int. J. Comput. Math. 82(1), 49–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ehigie, J., Jator, S., Okunuga, S.: A multi-point numerical integrator with trigonometric coefficients for initial value problems with periodic solutions. Numer. Anal. Appl. 10(3), 272–286 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Falkner, L.V.: A method of numerical solution of differential equations. Lond. Edinb. Dub. Philos. Mag. J. Sci. 21(141), 624–640 (1936)

    Article  MATH  Google Scholar 

  16. Collatz, L.: The Numerical Treatment of Differential Equations, vol. 60. Springer, Berlin (2012)

    Google Scholar 

  17. Ramos, H., Lorenzo, C.: Review of explicit Falkner methods and its modifications for solving special second-order IVPS. Comput. Phys. Commun. 181(11), 1833–1841 (2010)

    Article  MATH  Google Scholar 

  18. Ramos, H., Singh, G., Kanwar, V., Bhatia, S.: An efficient variable step-size rational Falkner-type method for solving the special second-order IVP. Appl. Math. Comput. 291, 39–51 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Li, J., Wu, X.: Adapted Falkner-type methods solving oscillatory second-order differential equations. Numer. Algor. 62(3), 355–381 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ehigie, J., Okunuga, S.: A new collocation formulation for the block Falkner-type methods with trigonometric coefficients for oscillatory second order ordinary differential equations. Afr. Mat. 29(3), 531–555 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fang, Y., Wu, X.: A trigonometrically fitted explicit numerov-type method for second-order initial value problems with oscillating solutions. Appl. Numer. Math. 58(3), 341–351 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ngwane, F.F., Jator, S.N.: Trigonometrically-fitted second derivative method for oscillatory problems. Springerplus 3(1), 1–11 (2014)

    Article  Google Scholar 

  23. Jator, S.N., Swindell, S., French, R.: Trigonometrically fitted block numerov type method for \(y^{\prime \prime }= f (x, y, y^{\prime })\). Numer. Algor. 62(1), 13–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ramos, H., Vigo-Aguiar, J.: On the frequency choice in trigonometrically fitted methods. Appl. Math. Lett. 23(11), 1378–1381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Abdulganiy, R., Akinfenwa, O., Okunuga, S.: Maximal order block trigonometrically fitted scheme for the numerical treatment of second order initial value problem with oscillating solutions. Int. J. Math. Sci. Optim. Theory Appl. 2017, 168–186 (2017)

    Google Scholar 

  26. Abdulganiy, R., Akinfenwa, O., Okunuga, S., Oladimeji, G.: A robust block hybrid trigonometric method for the numerical integration of oscillatory second order nonlinear initial value problems. AMSE J. 54, 497–518 (2017)

    Google Scholar 

  27. Ahmad, S.Z., Ismail, F., Senu, N.: A four-stage fifth-order trigonometrically fitted semi-implicit hybrid method for solving second-order delay differential equations. Math. Problems Eng. 2016, 1–17 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ismail, F., Ahmad, S.Z., Senu, N.: Trigonometrically fitted semi-implicit fourth order hybrid method for solving oscillatory delay differential equations. In: Proceedings of the World Congress on Engineering, vol. 1 ( 2017)

  29. Senu, N., Ahmad, N.A., Othman, M., Ibrahim, Z.B.: Numerical study for periodical delay differential equations using Runge–Kutta with trigonometric interpolation. Comput. Appl. Math. 41(1), 1–20 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gupta, G.: Implementing second-derivative multistep methods using the Nordsieck polynomial representation. Math. Comput. 32(141), 13–18 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. Alkasassbeh, M., Omar, Z., Mebarek-Oudina, F., Raza, J., Chamkha, A.: Heat transfer study of convective fin with temperature-dependent internal heat generation by hybrid block method. Heat Transf. Asian Res. 48(4), 1225–1244 (2019)

    Article  Google Scholar 

  32. Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, London (1973)

    MATH  Google Scholar 

  33. Ola Fatunla, S.: Block methods for second order odes. Int. J. Comput. Math. 41(1–2), 55–63 (1991)

    Article  MATH  Google Scholar 

  34. Jator, S.N., Akinfenwa, A., Okunuga, S.A., Sofoluwe, A.B.: High-order continuous third derivative formulas with block extensions for \(y^{\prime \prime }= f (x, y, y^{\prime })\). Int. J. Comput. Math. 90(9), 1899–1914 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Arndt, H., van der Houwen, P.J., Sommeijer, B.P.: Numerical integration of retarded differential equations with periodic solutions. Delay Equations, Approximation and Application. International Symposium at the University of Mannheim, Springer, pp 41–51 (1985)

  36. Morrison, T.M., Rand, R.H.: 2: 1 resonance in the delayed nonlinear Mathieu equation. Nonlinear Dyn. 50(1), 341–352 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to R. I. Abdulganiy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent to participate

The authors consented to the participation.

Consent for publication

The authors consented to the publication of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulganiy, R.I., Ramos, H., Okunuga, S. . et al. A trigonometrically fitted intra-step block Falkner method for the direct integration of second-order delay differential equations with oscillatory solutions. Afr. Mat. 34, 36 (2023). https://doi.org/10.1007/s13370-023-01075-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13370-023-01075-3

Keywords

Mathematics Subject Classification

Navigation