Skip to main content

New congruences for \(\ell \)-regular overpartition pairs


Let \(\overline{B}_{\ell }(n)\) denote the number of \(\ell -\) regular overpartition pairs of n. In this paper, we find some Ramanujan like congruences and infinite families of congruences for \(\overline{B}_{\ell }(n)\) for \(\ell \in \{3,4,5,8\}\). For example, for \(n \ge 0\) and \(\alpha \ge 0\), \(\overline{B}_{3}(4^{\alpha +1}(6n+5))\equiv 0\pmod {9}\), \(\overline{B}_{3}(12n+10)\equiv 0\pmod {9}\), \(\overline{B}_{5}(4n+3)\equiv 0\pmod {8}\) and \(\overline{B}_{8}(16n+12)\equiv 0\pmod {16}\).

This is a preview of subscription content, access via your institution.


  1. Berndt, B.C.: Ramanujan’s Notebooks. Springer-Verlag, New York, NY, USA, Part III (1991)

  2. Bringmann, K., Lovejoy, J.: Rank and congruences for overpartition pairs. Int. J. Number Theory 4, 303–322 (2008)

    MathSciNet  Article  Google Scholar 

  3. Chen, W.Y.C., Lin, B.L.S.: Arithmetic properties of overpartition pairs. Acta Arith. 151, 263–277 (2012)

    MathSciNet  Article  Google Scholar 

  4. Cui, S.P., Gu, N.S.S.: Arithmetic properties of \(\ell \)-regular partitions. Adv. Appl. Math. 51, 507–523 (2013)

    MathSciNet  Article  Google Scholar 

  5. Hirschhorn, M.D., Sellers, J.A.: Arithmetic relations for overpartitions. J. Combin. Math. Combin. Comput. 53, 65–73 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Hirschhorn, M.D., Garvan, F., Borwein, J.: Cubic analogs of the Jacobian cubic theta function \(\theta (z, q)\). Can. J. Math. 45, 673–694 (1993)

    Article  Google Scholar 

  7. Hirschhorn, M.D., Sellers, J.A.: Elementary proofs of parity results for \(5\)-regular partitions. Bull. Aust. Math. Soc. 81, 58–63 (2010)

    MathSciNet  Article  Google Scholar 

  8. Hirschhorn, M.D., and Sellers J.A.: A congruence modulo 3 for partitions into distinct non-multiples of four. J. Integer Sequences, 17, Article 14.9.6 (2014)

  9. Keith, W.J.: Congruences for \(9\)-regular partitions modulo 3. Ramanujan J. 35, 157–164 (2014)

    MathSciNet  Article  Google Scholar 

  10. Kim, B.: Overpartition pairs modulo powers of 2. Discrete Math. 311, 835–840 (2011)

    MathSciNet  Article  Google Scholar 

  11. Lovejoy, J.: Overpartition pairs. Ann. Inst. Fourier. 56, 781–794 (2006)

    MathSciNet  Article  Google Scholar 

  12. Lovejoy, J.: Gordon’s theorem for overpartitions. J. Combin. Theory Ser. A, 103, 393-401 (2003)

  13. Mahadeva Naika, M.S., Shivashankar, C.: Arithmetic properties of \(\ell \)-regular overpartition pairs. Turk. J. Math., 41, 756-774 (2017)

  14. Penniston, D.: Arithmetic of \(\ell \)-regular partition functions. Int. J. Number Theory 4, 295–302 (2008)

    MathSciNet  Article  Google Scholar 

  15. Shen, E.Y.Y.: Arithmetic properties of \(\ell -\)regular overpartition. Int. J. Number Theory 12, 841–852 (2016)

    MathSciNet  Article  Google Scholar 

  16. Webb, J.J.: Arithmetic of the 13-regular partition function modulo 3. Ramanujan J. 25, 49–56 (2011)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to C. Shivashankar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shivashankar, C., Gireesh, D.S. New congruences for \(\ell \)-regular overpartition pairs. Afr. Mat. 33, 82 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Congruences
  • Theta function
  • Overpartition pair
  • \(\ell -\) regular partition

Mathematics Subject Classification

  • 11P83
  • 05A15
  • 05A17