Skip to main content
Log in

Pathway fractional integral operators involving \(\mathtt {k}\)-Struve function

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

Fractional calculus has gained more attention during the last decade due to their effectiveness and potential applicability in various problems of mathematics and statistics. Several authors have studied the pathway fractional operator representations of various special functions such as Bessel function, generalized Bessel functions, Struve function and generalized Struve function. Many researchers have established the significance and great consideration of Struve function in the theory of special functions for exploring the generalization and some applications. A new generalization called \(\mathtt {k}\)-Struve function \(\mathtt {S}_{\nu ,c}^{\mathtt {k}}\left( x\right) \) defined by

$$\begin{aligned} \mathtt {S}_{\nu ,c}^{\mathtt {k}}(x):=\sum _{r=0}^{\infty }\frac{(-c)^r}{\varGamma _{\mathtt {k}}\left( r\mathtt {k}+\nu +\frac{3\mathtt {k}}{2}\right) \varGamma \left( r+\frac{3}{2}\right) } \left( \frac{x}{2}\right) ^{2r+\frac{\nu }{\mathtt {k}}+1}. \end{aligned}$$

where \(c,\nu \in {C}, \nu >\frac{3}{2}\mathtt {k}\) is given by Nisar and Saiful very recently. In this paper, we establish the pathway fractional integral representation of \(\mathtt {k}\)-Struve function. Also, we give the relationship between trigonometric function and \(\mathtt {k}\)-Struve function and establish the pathway fractional integration of cosine, hyperbolic cosine, sine and hyperbolic sine functions. Some special cases also established to obtain the pathway integral representation of classical Struve function. It is pointed out that the main results presented here are general enough to be able to be specialized to yield many known and (presumably) new results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, P., Purohit, S.D.: The unified pathway fractional integral formulae. Fract. Calc. Appl. 4(9), 1–8 (2013)

    Google Scholar 

  2. Baleanu, D., Agarwal, P.: A Composition Formula of the Pathway Integral Transform Operator. Note di Matematica, Note Mat. 34(2), 145–155 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Das, S.: Introduction to Fractional Calculus. In: Functional Fractional Calculus. Springer, Berlin (2011)

    Chapter  Google Scholar 

  4. Fox, C.: The asymptotic expansion of generalized hypergeometric functions. Proc. Lond. Math. Soc. 27(4), 389–400 (1928)

    Article  MathSciNet  Google Scholar 

  5. Kilbas, A.A., Saigo, M., Trujillo, J.J.: On the generalized Wright function. Fract. Calc. Appl. Anal. 5(4), 437–460 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Kilbas, A.A., Sebastian, N.: Fractional integration of the product of Bessel function of the first kind. Fract. Calc. Appl. Anal. 13(2), 159–175 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Kilbas, A.A., Sebastian, N.: Generalized fractional integration of Bessel function of the first kind. Integral Transforms Spec. Funct. 19(11–12), 869–883 (2008)

    Article  MathSciNet  Google Scholar 

  8. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006)

    Google Scholar 

  9. Mathai, A.M., Haubold, H.J.: On generalized distributions and path-ways. Phys. Lett. A 372, 2109–2113 (2008)

    Article  Google Scholar 

  10. Mathai, A.M., Haubold, H.J.: Pathway model, superstatistics, Tsallis statistics and a generalize measure of entropy. Phys. A 375, 110–122 (2007)

    Article  MathSciNet  Google Scholar 

  11. Mathai, A.M.: A pathway to matrix-variate gamma and normal densities. Linear Algebra Appl. 396, 317–328 (2005)

    Article  MathSciNet  Google Scholar 

  12. Misra, V.N., Suthar, D.L., Purohit, S.D.: Marichev-Saigo-Maeda fractional calculus operators, Srivastava polynomials and generalized Mittag-Leffler function. Cogent Math. 4, 1320830 (2017). https://doi.org/10.1080/23311835.2017.1320830

    Article  MathSciNet  MATH  Google Scholar 

  13. Mondal, S.R., Nisar, K.S.: Marichev-Saigo-Maeda fractional integration operators involving generalized Bessel functions. Math. Probl. Eng. 2014, 274093 (2014)

    Article  MathSciNet  Google Scholar 

  14. Nair, S.S.: Pathway fractional integration operator. Fract. Calc. Appl. Anal. 12(3), 237–252 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Nisar, K.S., Mondal, S.R., Choi, J.: Certain inequalities involving the \(\mathtt k\)-Struve function. J. Inequal. Appl. 2017, 17 (2017)

  16. Nisar, K.S., Purohit, S.D., Abouzaid, M.S., Al-Qurashi, M., Baleanu, D.: Generalized k-Mittag-Leffler function and its composition with pathway integral operators. J. Nonlinear Sci. Appl. 9, 3519–3526 (2016)

    Article  MathSciNet  Google Scholar 

  17. Nisar, K.S., Eata, A.F., Dhaifallah, M.D., Choi, J.: Fractional calculus of generalized \(k\)-Mittag-Leffler function and its applications to statistical distribution. Adv. Differ. Equ. 2016, 304 (2016). https://doi.org/10.1186/s13662-016-1029-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Purohit, S.D., Suthar, D.L., Kalla, S.L.: Marichev-Saigo-Maeda fractional integration operators of the Bessel function. Le Matematiche 67, 21–32 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Rahman, G., Nisar, K.S., Choi, J., Mubeen, S., Arshad, M.: Pathway Fractional Integral Formulas Involving Extended Mittag-Leffler Functions in the Kernel. Kyungpook Math. J. 59, 125–34 (2019)

    MathSciNet  Google Scholar 

  20. Rainville, E.D.: Special functions. Macmillan, New York (1960)

    MATH  Google Scholar 

  21. Saigo, M., Maeda, N.: More generalization of fractional calculus. In: Transform Methods & Special Functions; Bulgarian Academy of Sciences: Sofia, Bulgaria, 96, 386–400 (1998)

  22. Wright, E.M.: The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans. R. Soc. London, Ser. A 238, 423–451 (1940)

    Article  MathSciNet  Google Scholar 

  23. Wright, E.M.: The asymptotic expansion of the generalized hypergeometric function. Proc. Lond. Math. Soc. 2(46), 389–408 (1940)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kottakkaran Sooppy Nisar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisar, K.S., Mondal, S.R. & Wang, G. Pathway fractional integral operators involving \(\mathtt {k}\)-Struve function. Afr. Mat. 30, 1267–1274 (2019). https://doi.org/10.1007/s13370-019-00716-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-019-00716-w

Keywords

Mathematics Subject Classification

Navigation