Skip to main content
Log in

Exact solution for the fractional partial differential equation by homo separation analysis method

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

In this paper, the homo separation analysis method is used to obtain the exact solution for linear and nonlinear fractional partial differential equation (FPDE). This analytical method is a combination of the homotopy analysis method with the separation of variables method. By using this method, FPDE to be solved is changed into FODE. However, this method depends on several important topics and definitions such as Riemann–Liouville fractional integral, Caputo’s definition and Mittag-leffler function. In order to illustrate the simplicity and ability of the suggested approach, some specific and clear examples have been given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gorenflo, R., Mainardi, F.: Fractional Calculus. Springer, Vienna (1977)

    MATH  Google Scholar 

  2. Miller, K.S., Ross, B.: An Inroduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    Google Scholar 

  3. Kilbas, A.A., Trujillo, J.J.: Differential equations of fractional order: methods, results and problems II. Appl. Anal. 81, 435–493 (2002)

    Article  MathSciNet  Google Scholar 

  4. El-Sayed, A.: Nonlinear fractional differential equations of arbitrary orders. Nonlinear Anal. 33, 181–186 (1998)

    Article  MathSciNet  Google Scholar 

  5. Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press, New York (1999)

    MATH  Google Scholar 

  6. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. World Scientific, Singapore (2009)

    MATH  Google Scholar 

  7. Zaslavsky, G.M.: Chaos fractional kenetics and anomalous transport. Phys. Rep. 371(6), 461–580 (2002)

    Article  MathSciNet  Google Scholar 

  8. Al-Smadi, M., Abu Arqub, O.: Computational algorithm for solving fredholm time-fractional partial integro differential equations of dirichlet functions type with error estimates. Appl. Math. Comput. 342, 280–294 (2019)

    MathSciNet  Google Scholar 

  9. Abuteen, E., Freihat, A., Al-Smadi, M., Khalil, H., Khan, R.A.: Approximate series solution of nonlinear, fractional Klein–Gordon equations using fractional reduced differential transform method. J. Math. Stat. 12(1), 23–33 (2016)

    Article  Google Scholar 

  10. Hirota, R.: Exact enve lope-soliton solutions of a non linear wave. J. Math. Phys. 14(7), 805–809 (1973)

    Article  Google Scholar 

  11. Maliet, W.: The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations. J. Comput. Appl. Math. 164, 529–541 (2004)

    Article  MathSciNet  Google Scholar 

  12. Odibat, Z., Bertelle, C., Aziz-Alaoui, M.A., Duchamp, G.: A multi-step diffrential transform method and application to non-chaotic or chaotic systems. Comput. Math. Appl. 59(4), 1462–1472 (2010)

    Article  MathSciNet  Google Scholar 

  13. Erturk, V.S., Momani, S., Odibat, Z.: Application of generalized differential transform method to multi-order fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 13, 1642–1654 (2008)

    Article  MathSciNet  Google Scholar 

  14. Odibat, Z., Momani, S.: A generalized differential transform method for linear partial differential equations of fractional order. Appl. Math. Lett. 21, 194–199 (2008)

    Article  MathSciNet  Google Scholar 

  15. Freihat, A.A., Zuriqat, M.: Analytical solution of fractional Burgers–Huxley equations via residual power series method. Lobachevskii J. Math. 40(2), 174–182 (2019)

    Article  MathSciNet  Google Scholar 

  16. Momani, S., Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365, 345–350 (2007)

    Article  MathSciNet  Google Scholar 

  17. Wang, Q.: Homotopy perturbation method for fractional order KdV equation. Appl. Math. Comput. 190(2), 1795–1802 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Ghandehari, M.A.M., Ranjbar, M.: A numerical method for solving a fractional partial differential equation through converting it into an NLP problem. Comput. Math. Appl. 65, 975–982 (2013)

    Article  MathSciNet  Google Scholar 

  19. Ghandehari, M.A.M., Ranjbar, M.: Solving the fractional Volterra integro-differential equations by an extremum problem. J. Adv. Res. Sci. Comput. 7, 38–49 (2015)

    MathSciNet  Google Scholar 

  20. Zhang, J.L., Wang, M.L., Li, X.R.: The subsidiary elliptic-like equation and the exact solutions of the higher-order nonlinear Schrö dinger equation. Chaos Solitons Fractals 33, 1450–1457 (2007)

    Article  MathSciNet  Google Scholar 

  21. Wazwaz, A.M.: The tanh–coth and the sech methods for exact solutions of the Jaulent–Miodek equation. Phys. Lett. A 366, 85–90 (2007)

    Article  Google Scholar 

  22. Zuriqat, M.: The homo separation analysis method for solving the partial differential equation. Ital. J. Pure Appl. Math. 40, 535–543 (2018)

    MATH  Google Scholar 

  23. Yang, G., Chen, R., Yao, L.: On exact solutions to partial differential equations by the modified homotopy perturbation method. Acta Math. Appl. Sin. 28, 91–98 (2012)

    Article  MathSciNet  Google Scholar 

  24. Ghandehari, M., Ranjbar, M.: Using homo-separation of variables for pricing European option of the fractional Black–Scholes model in financial markets. Math. Sci. 5(2), 181–187 (2016)

    Google Scholar 

  25. Cang, J., Tan, Y., Xu, H., Liao, S.: Series solutions of non-linear Riccati differential equations with fractional order. Chaos Solitons Fractals 40, 1–9 (2009)

    Article  MathSciNet  Google Scholar 

  26. Song, L., Zhang, H.: Application of homotopy analysis method to fractional KdV-Burgers–Kuramoto equation. Phys. Lett. A 367, 88–94 (2007)

    Article  MathSciNet  Google Scholar 

  27. Al-Smadi, M., Gumah, G.: On the homotopy analysis method for fractional SEIR epidemic model. Res. J. Appl. Sci. Eng. Technol. 7(18), 3809–3820 (2014)

    Article  Google Scholar 

  28. Zurigat, M., Momani, S., Alawneh, A.: Analytical approximate solutions of systems of fractional algebraic-differential equations by homotopy analysis method. Comput. Math. Appl. 59, 1227–1235 (2010)

    Article  MathSciNet  Google Scholar 

  29. Samko, S.G., Kilber, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publshers, Yverdon (1993)

    Google Scholar 

  30. Cheng, J., Chu, Y.: Solution to the linear fractional differential equation using Adomian decomposition method. Math. Probl. Eng. 2011, 14 (2014). (Article ID 587068)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zuriqat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuriqat, M. Exact solution for the fractional partial differential equation by homo separation analysis method. Afr. Mat. 30, 1133–1143 (2019). https://doi.org/10.1007/s13370-019-00707-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-019-00707-x

Keywords

Mathematics Subject Classification

Navigation