Skip to main content
Log in

An efficient conjugate gradient trust-region approach for systems of nonlinear equation

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

In this paper, we introduce a combination of family of some conjugate gradient methods (CG) with the trust-region method. Whenever the trust-region algorithm is unsuccessful, a family of CG methods is used to prevent resolving the trust-region subproblem. The computational cost for such a family is trivial. The global theory of the new approach is proved and numerical experiments are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahookhosh, M., Amini, K.: A nonmonotone trust-region method with adaptive radius for unconstrained optimization. Comput. Math. Appl. 60, 411–422 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahookhosh, M., Amini, K., Peyghami, M.R.: A nonmonotone trust-region line search method for large-scale unconstrained optimization. Appl. Math. Modell. 36, 478–487 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amini, K., Shiker Mushtak, A.K., Kimiaei, M.: A line search trust-region algorithm with nonmonotone adaptive radius for a system of nonlinear equations. 4OR-Q. J. Oper. Res. 4(2), 132–152 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Bellavia, S., Macconi, M., Morini, B.: STRSCNE: a scaled trust-region solver for constrained nonlinear equations. Comput. Optim. Appl. 28, 31–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouaricha, A., Schnabel, R.B.: Tensor methods for large sparse systems of nonlinear equations. Math. Program. 82, 377–400 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Broyden, C.G.: The convergence of an algorithm for solving sparse nonlinear systems. Math. Comput. 25(114), 285–294 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Conn, A.R., Gould, N.I.M., Toint, PhL: Trust-Region Methods. Society for Industrial and Applied Mathematics SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  8. Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10, 177–182 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Esmaeili, H., Kimiaei, M.: A new adaptive trust-region method for system of nonlinear equations. Appl. Math. Model. 38(11–12), 3003–3015 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fan, J.Y.: Convergence rate of the trust region method for nonlinear equations under local error bound condition. Comput. Optim. Appl. 34, 215–227 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan, J.Y.: An improved trust region algorithm for nonlinear equations. Comput. Optim. Appl. 48(1), 59–70 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan, J.Y., Pan, J.Y.: A modified trust region algorithm for nonlinear equations with new updating rule of trust region radius. Int. J. Comput. Math. 87(14), 3186–3195 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fasano, G., Lampariello, F., Sciandrone, M.: A truncated nonmonotone Gauss-Newton method for large-scale nonlinear least-squares problems. Comput. Optim. Appl. 34(3), 343–358 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fletcher, R., Reeves, C.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grippo, L., Sciandrone, M.: Nonmonotone derivative-free methods for nonlinear equations. Comput. Optim. Appl. 37, 297–328 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kimiaei, M., Rahpeymaii, F.: A new nonmonotone line-search trust-region approach for nonlinear systems. TOP (2019). https://doi.org/10.1007/s11750-019-00497-2

    Google Scholar 

  20. La Cruz, W., Venezuela, C., Martínez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations: Theory and experiments, Technical Report RT–04–08, July (2004)

  21. Li, D.H., Fukushima, M.: A derivative-free line search and global convergence of Broyden-like method for nonlinear equations. Optim. Methods Softw. 13, 181–201 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lukšan, L., Vlček, J.: Sparse and partially separable test problems for unconstrained and equality constrained optimization, Technical Report. No. 767, (1999)

  23. Moré, J.J., Garbow, B.S., Hillström, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  25. Toint, PhL: Numerical solution of large sets of algebraic nonlinear equations. Math. Comput. 46(173), 175–189 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yuan, G., Lu, S., Wei, Z.: A new trust-region method with line search for solving symmetric nonlinear equations. Int. J. Comput. Math. 88(10), 2109–2123 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yuan, G.L., Wei, Z.X., Lu, X.W.: A BFGS trust-region method for nonlinear equations. Computing. 92(4), 317–333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yuan, Y.: Trust region algorithm for nonlinear equations. Information. 1, 7–21 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, J., Wang, Y.: A new trust region method for nonlinear equations. Math. Methods Oper. Res. 58, 283–298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Rahpeymaii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahpeymaii, F. An efficient conjugate gradient trust-region approach for systems of nonlinear equation. Afr. Mat. 30, 597–609 (2019). https://doi.org/10.1007/s13370-019-00669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-019-00669-0

Keywords

Mathematics Subject Classification

Navigation