Skip to main content

Advertisement

Log in

Kernel regression estimation with errors-in-variables for random fields

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

In this paper, we investigate kernel regression estimation when the data are contaminated by measurement errors in the context of random fields. We establish sharp rate of weak and strong convergence of the kernel regression estimator under both the ordinary smooth and super-smooth assumptions. Numerical studies were carried out in order to illustrate the performance of the estimator with simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amiri, A., Dabo-Niang, S.: Density estimation over spatio-temporal data stream. Econ. Stat. 5, 148–170 (2018)

    MathSciNet  Google Scholar 

  2. Billingsley, P.: Probability Measure, 3rd edn. Wiley, New York (1995)

    MATH  Google Scholar 

  3. Biau, G., Cadre, B.: Nonparametric spatial prediction. Stat. Inference Stoch. Process 7, 327–349 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bouzebda, S., Slaoui, Y.: Nonparametric recursive method for kernel-type function estimators for spatial data. Stat. Probab. Lett 139, 103–114 (2018)

    Article  MathSciNet  Google Scholar 

  5. Carbon, M., Tran, L.T., Wu, B.: Kernel density of random fields. Stat. Probab. Lett. 36, 115–125 (1997)

    Article  Google Scholar 

  6. Carbon, M., Francq, C., Tran, L.T.: Kernel regression estimation for random fields. J. Stat. Plan. Inference 137(3), 778–798 (2007)

    Article  MathSciNet  Google Scholar 

  7. Carroll, R., Hall, P.: Optimal rates of convergence for deconvolving a density. J. Am. Stati. Assoc. 83, 1184–1186 (1988)

    Article  MathSciNet  Google Scholar 

  8. Cressie, N.: Statistics for Spatial Data. Wiley, New York (1991)

    MATH  Google Scholar 

  9. Cressie, N., Wickle, C.K.: Stat. Spatio-Temporal Data. Wiley, Chichester (2011)

    Google Scholar 

  10. Dabo-Niang, S., Yao, A.F.: Spatial kernel regression estimation. Math. Methods Stat. 16(4), 1–20 (2007)

    Article  Google Scholar 

  11. Dabo-Niang, S., Ternynck, C., Yao, A.F.: Nonparametric prediction of spatial multivariate. Nonparametr. Stat. 28(2), 428–458 (2016)

    Article  MathSciNet  Google Scholar 

  12. Darwich, E.: Spatial statistics in discrete-choice models, application to UADT cancers in northern France, PhD. Thesis, University of Lille (2017)

  13. El Machkouri, M.: Asymptotic normality of the Parzen-Rosenblatt density estimator for strongly mixing random fields. Stat. Inference Stoch. Process. 14(1), 73–84 (2011)

    Article  MathSciNet  Google Scholar 

  14. Fan, J.: On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Stat. 19, 1257–1272 (1991a)

    Article  MathSciNet  Google Scholar 

  15. Fan, J.: Asymptotic normality for deconvolution kernel density estimators. Sankhya 53, 97–110 (1991b)

    MathSciNet  MATH  Google Scholar 

  16. Fan, J.: Deconvolution with super smooth distributions. Can. J. Stat. 20(2), 155–169 (1992)

    Article  Google Scholar 

  17. Fan, J., Truong, Y.K.: Nonparametric regression with errors in variables. Ann. Stat. 21(4), 1900–1925 (1993)

    Article  MathSciNet  Google Scholar 

  18. Guyon, X.: Random Fields on a Network. Springer, New York (1995)

    MATH  Google Scholar 

  19. Hallin, M., Lu, Z., Tran, L.T.: Local linear spatial regression. Ann. Stat. 32(6), 2469–2500 (2004)

    Article  MathSciNet  Google Scholar 

  20. Hallin, M., Lu, Z., Yu, K.: Local linear spatial quantile regression. Bernoulli 15(3), 659–686 (2009)

    Article  MathSciNet  Google Scholar 

  21. Hayfield, T., Racine J.S.: Nonparametric econometrics: the np Package. J. Stati. softw. 27(5) (2008). https://www.jstatsoft.org/article/view/v027i05

  22. Journel, A.G.: Nonparametric estimation of spatial distributions. J. Int. Assoc. Math. Geol. 15(3), 445–468 (1983)

    Article  MathSciNet  Google Scholar 

  23. Li, Q., Racine, J.S.: Cross-validated local linear nonparametric regression. Stat. Sinica 14, 485–512 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Li, J., Tran, L.T.: Nonparametric estimation of conditional expectation. J. Stat. Plan. Inference 139, 164–175 (2009)

    Article  MathSciNet  Google Scholar 

  25. Liu, M.C., Taylor, R.C.: A consistent nonparametric density estimator for the convolution problem. Can. J. Stat. 17(4), 427–438 (1989)

    Article  Google Scholar 

  26. Lu, Z., Tjostheim, D.: Nonparametric estimation of probability density functions for irregularly observed spatial data. J. Am. Stat. Assoc. 109(508), 1546–1564 (2014)

    Article  MathSciNet  Google Scholar 

  27. Masry, E.: Multivariate probability density deconvolution for stationary random process. IEEE Tran. Inf. Theory 37(4), 1105–1115 (1991)

    Article  MathSciNet  Google Scholar 

  28. Menezes, R., García-Soidán, P., Ferreira, C.: Nonparametric spatial prediction under stochastic sampling design. J. Nonparametr. Stat. 22(3), 363–377 (2010)

    Article  MathSciNet  Google Scholar 

  29. Fan, J., Masry, E.: Multivariate regression estimation with errors-in-variables: asymptotic normality for mixing processes. J. Multivar. Anal. 43, 237–271 (1992)

    Article  MathSciNet  Google Scholar 

  30. Masry, E.: Multivariate regression estimation with errors-in-variables for stationary processes. J. Nonparametr. Stat. 3, 13–36 (1993a)

    Article  MathSciNet  Google Scholar 

  31. Masry, E.: Strong consistency and rates for deconvolution for stationary random processes. Stoch. Process Appl. 47, 53–74 (1993b)

    Article  Google Scholar 

  32. Masry, E.: Asymptotic normality for deconvolution estimators of multivariate densities of stationary processes. J. Multivar. Anal. 44, 57–68 (1993c)

    Article  MathSciNet  Google Scholar 

  33. Politis, D.N., Romano, J.P.: Nonparametric resampling for homogeneous strong mixing random fields. J. Multivar. Anal. 47, 301–328 (1993)

    Article  MathSciNet  Google Scholar 

  34. Racine, J.S., Li, Q.: Nonparametric estimation of regression functions with both categorical and continuous data. J. Econometr. 119, 99–130 (2004)

    Article  MathSciNet  Google Scholar 

  35. Ripley, B.: Spatial Statistics. Wiley, New York (1981)

    Book  Google Scholar 

  36. Stefanski, L., Carroll, R.J.: Deconvoluting kernel density estimators. Statistics 1, 169–184 (1990)

    Article  MathSciNet  Google Scholar 

  37. Tran, L.T.: Kernel density estimation on random fields. J. Multivar. Anal. 34, 37–53 (1990)

    Article  MathSciNet  Google Scholar 

  38. Wang, X.F., Wang, B.: Deconvolution estimation in measurement error models: the R package decon. J. Stat. Softw. 39(10), 1–24 (2011)

    Article  Google Scholar 

  39. Wackernagel, H.: Multivariate Geostatistics: An Introduction with Applications, Third edn. Springer, Berlin Heidelberg (2003)

    Book  Google Scholar 

  40. Ternynck, C.: Spatial regression estimation for functional data with spatial dependency. J. de la Société Française de Statistique 155(2), 138–160 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Yuan, Y.: Deconvolution multivariate density from random field. Stat. Inference Stoch. Process. 6, 135–153 (2003)

    Article  MathSciNet  Google Scholar 

  42. Zhang, C.H.: Fourier methods for estimating mixing density and distributions. Ann. Stat. 18, 806–830 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Dabo-Niang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabo-Niang, S., Thiam, B. Kernel regression estimation with errors-in-variables for random fields. Afr. Mat. 31, 29–56 (2020). https://doi.org/10.1007/s13370-019-00654-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-019-00654-7

Keywords

Mathematics Subject Classification

Navigation