A generalization of \((\in , \in \vee q)\)-fuzzy ternary subsemigroups

Article
  • 3 Downloads

Abstract

Using more general form of quasi-coincident fuzzy points, the notion of \(({\tilde{\alpha }},\) \({\tilde{\beta }})\)-fuzzy ternary subsemigroups is introduced. Several properties are discussed. Characterizations of \((\in ,\) \(\in \! \vee \, q^{\delta }_0)\)-fuzzy ternary subsemigroups are considered. Relations between\((\in ,\) \(\in )\)-fuzzy ternary subsemigroups and \((\in ,\) \(\in \! \vee \, q^{\delta }_0)\)-fuzzy ternary subsemigroups are provided.

Keywords

\(({\widetilde{\alpha }}, {\widetilde{\beta }})\)-fuzzy ternary Ternary subsemigroup \((\in , \in \vee q)\)-fuzzy ternary subsemigroup 

Mathematics Subject Classification

20M12 03E72 08A72 

References

  1. 1.
    Bhakat, S.K., Das, P.: \((\in,\in \!\vee \, q)\)-fuzzy subgroup. Fuzzy Sets Syst. 80, 359–368 (1996)CrossRefMATHGoogle Scholar
  2. 2.
    Jun, Y.B., Öztürk, M.A., Muhiuddin, G.: A generalization of \((\in,\) \(\in \vee q)\)-fuzzy subgroups. Int. J. Algeb. Stats. 5, 7–18 (2016)CrossRefGoogle Scholar
  3. 3.
    Lehmer, D.H.: A ternary analogue of Abelian groups. Am. J. Math. 59, 329–338 (1932)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Los, J.: On the extending of models I. Fundam. Math. 42, 38–54 (1955)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Pu, P.M., Liu, Y.M.: Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore–Smith convergence. J. Math. Anal. Appl. 76, 571–599 (1980)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Rehman, N.: Fuzzy subalgebraic structures of ternary semigroups based on fuzzy point. Ph. D. Dissertation, Quaid-i-Azam University, Islamabad, Pakistan (2015)Google Scholar
  7. 7.
    Rehman, N., Shabir, M.: Characterizations of ternary semigroups by \((\alpha,\) \(\beta )\)-fuzzy ideals. World Appl. Sci. J. 18(11), 1556–1570 (2012)Google Scholar
  8. 8.
    Rosenfeld, A.: Fuzzy groups. J. Math. Anal. Appl. 35, 512–517 (1971)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Shabir, M., Rehman, N.: Characterizations of ternary semigroups by \((\in,\) \(\in \vee q_{k})\)-fuzzy ideals. Iran. J. Sci. Technol. Trans. A (Special Issue-Mathematics) 36(A3), 395–410 (2012)MATHGoogle Scholar
  10. 10.
    Sioson, F.M.: Ideal theory in ternary semigroups. Math. Japon. 10, 63–84 (1965)MathSciNetMATHGoogle Scholar
  11. 11.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefMATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsRiphah International UniversityIslamabadPakistan
  2. 2.Department of Mathematics EducationGyeongsang National UniversityJinjuKorea

Personalised recommendations