Skip to main content
Log in

Iteration process for solving a fixed point problem of nonexpansive mappings in Banach spaces

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

In this work, we introduce a new iteration process for solving the fixed point problem of a finite family of nonexpansive mappings. We then prove, in Banach spaces, the strong convergence theorem under some mild conditions. Finally, we give some numerical results to support our main result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Moudafi, A.: Viscosity approximation methods for fixed-points. J. Math. Anal. Appl. 241, 46–55 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yao, Y., Chen, R., Yao, J.C.: Strong convergence and certain control conditions for modified Mann iteration. Nonlinear Anal. 68, 1687–1693 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cho, Y.J., Kang, S.M., Qin, X.: Approximation of common fixed points an infinite family of nonexpansive mapping in Banach spaces. Comput. Math. Appl. 56, 2058–2064 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cholamjiak, P.: A new multi-step iteration for solving a fixed point problem of nonexpansive mappings. Fixed Point Theory Appl. 2013, 198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, S.S.: Viscosity approximation methods for a finite family of nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 323, 1402–1416 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cho, Y.J., Kang, S.M., Zhou, H.: Some control conditions on iterative methods. Commun. Appl. Nonlinear Anal. 12, 27–34 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Hu, L.-G.: Theorems of strong convergence of mixed iterative methods for obtaining strict pseudocontractions in Banach spaces. Appl. Math. Lett. 23, 791–795 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jung, J.S.: Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 302, 509–520 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jung, J.S., Sahu, D.R.: Convergence of approximating paths to solutions of variational inequalities involving non-Lipschitzian mappings. J. Korean Math. Soc. 45, 377–392 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Marino, G., Xu, H.K.: A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 318, 43–52 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Takahashi, W.: Viscosity approximation methods for countable families of nonexpansive mappings in Banach spaces. Nonlinear Anal. 70, 719–734 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xu, H.K.: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279–291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xu, H.K.: Another control condition in iterative method for nonexpansive mappings. Bull. Aust. Math. Soc. 65, 109–113 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yao, Y., Liou, L.C., Zhou, H.: Strong convergence of an iterative method for nonexpansive mappings with new control conditions. Nonlinear Anal. 70, 2332–2336 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhou, H., Wei, L., Cho, Y.J.: Strong convergence theorems on an iterative method for a family of finite nonexpansive mappings in reflexive Banach spaces. Appl. Math. Comput. 173, 196–212 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  17. Suzuki, T.: Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl. 305, 227–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xu, H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659678 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank University of Phayao for supporting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasit Cholamjiak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoonyang, S., Inta, M. & Cholamjiak, P. Iteration process for solving a fixed point problem of nonexpansive mappings in Banach spaces. Afr. Mat. 29, 783–792 (2018). https://doi.org/10.1007/s13370-018-0579-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-018-0579-z

Keywords

Mathematics Subject Classification

Navigation