Advertisement

Afrika Matematika

, Volume 29, Issue 3–4, pp 665–675 | Cite as

Ricci collineations on 3-dimensional paracontact metric manifolds

  • I. Küpeli Erken
  • C. Murathan
Article

Abstract

We classify three-dimensional paracontact metric manifold whose Ricci operator Q is invariant along Reeb vector field, that is, \({\mathcal {L}} _{\xi }Q=0\).

Keywords

Paracontact metric manifold Contact metric manifold Ricci collineation Reeb vector field 

Mathematics Subject Classification

Primary 53B30 53C25 Secondary 53D10 

References

  1. 1.
    Calvaruso, G.: Homogeneous paracontact metric three-manifolds. Ill. J. Math. 55, 697–718 (2011)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Calvaruso, G., Perrone, D.: H-contact semi-Riemannian manifolds. J. Geom. Phys. 71, 11–21 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Calvaruso, G., Perrone, D.: Geometry of H-paracontact metric manifolds. Publ. Math. Debrecen 86(3-4), 325–346 (2015)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Calvino-Louzao, E., Seoane-Bascoy, J., Vázquez-Abal, M.E., Vázquez-Lorenzo, R.: Invariant Ricci collineations on three-dimensional Lie groups. J. Geom. Phys. 96, 59–71 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cappelletti, Montano B., Küpeli, Erken I., Murathan, C.: Nullity conditions in paracontact geometry. Differ. Geom. Appl. 30, 665–693 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cho, J.T.: Contact \(3\)-manifolds with the Reeb flow symmetry. Tohoku Math. J. 66, 491–500 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cho, J.T., Kimura, M.: Reeb flow symmetry on almost contact three-manifolds. Differ. Geom. Appl. 35, 266–273 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Duggal, K.L., Sharma, R.: Symmetries of Spacetimes and Riemannian Manifolds. Kluwer, Dordrecht (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hall, G.S.: Symmetries and geometry in general relativity. Differ. Geom. Appl. 1, 35–45 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Küpeli Erken, I., Murathan, C.: A study of three-dimensional paracontact \((\kappa,\mu, v)\)-spaces. Int. J. Geom. Methods Mod. Phys. 14(7), 1750106 (2017).  https://doi.org/10.1142/S0219887817501067 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Koufogiorgos, T., Markellos, M., Papantoniou, B.: The harmonicity of the Reeb vector field on contact metric 3-manifolds. Pac. J. Math. 234, 325–344 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Perrone, D.: Harmonic characteristic vector fields on contact metric three-manifolds. Bull. Austral. Math. Soc. 67(2), 305–315 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Welyczko, J.: Para-CR structures on almost paracontact metric manifolds. J. Appl. Anal. 20(2), 105–117 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zamkovoy, S.: Canonical connections on paracontact manifolds. Ann. Glob. Anal. Geom. 36, 37–60 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Natural Sciences, Architecture and EngineeringBursa Technical UniversityBursaTurkey
  2. 2.Department of Mathematics, Art and Science FacultyUludag UniversityBursaTurkey

Personalised recommendations