Afrika Matematika

, Volume 29, Issue 3–4, pp 655–664 | Cite as

Inclusion relations for subclasses of multivalent functions defined by Srivastava–Saigo–Owa fractional differintegral operator

  • A. O. Mostafa
  • M. K. Aouf
  • H. M. Zayed


The purpose of this paper is to introduce subclasses of multivalent functions by using Srivastava–Saigo–Owa fractional differintegral operator and investigate various properties for these subclasses. Also, we investigate inclusion relations involving the operator \(F_{p,c}\).


Starlike Convex functions Hadamard product (or convolution) Generalized fractional derivative operator Generalized fractional integral operator 

Mathematics Subject Classification

30C45 30C50 


  1. 1.
    Al-Oboudi, F.M.: On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 27, 1429–1436 (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Aouf, M.K.: A generalization of functions with real part bounded in the mean on the unit disc. Math. Jpn. 33(2), 175–182 (1988)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Aouf, M.K.: Certain subclasses of multivalent prestarlike functions with negative coefficients. Demonstr. Math. 40(4), 799–814 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Aouf, M.K., Mostafa, A.O.: On a subclass of \(n-p\)-valent prestarlike functions. Comput. Math. Appl. 55, 851–861 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Aouf, M.K., Mostafa, A.O., Zayed, H.M.: Subordination and superordination properties of \(p\)-valent functions defined by a generalized fractional differintegral operator. Quaest. Math. 39(4), 545–560 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Aouf, M.K., Mostafa, A.O., Zayed, H.M.: Some characterizations of integral operators associated with certain classes of \(p\)-valent functions defined by the Srivastava–Saigo–Owa fractional differintegral operator. Complex Anal. Oper. Theory 10, 1267–1275 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Aouf, M.K., Mostafa, A.O., Zayed, H.M.: On certain subclasses of multivalent functions defined by a generalized fractional differintegral operator. Afr. Mat. 28, 99–107 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cho, N.K., Kwon, O.S., Srivastava, H.M.: Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators. J. Math. Anal. Appl. 292, 470–483 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Goyal, S.P., Prajapat, J.K.: A new class of analytic \(p\)-valent functions with negative coefficients and fractional calculus operators. Tamsui Oxford Univ. J. Math. Sci. 20(2), 175–186 (2004)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kamali, M., Orhan, H.: On a subclass of certian starlike functions with negative coefficients. Bull. Korean Math. Soc. 41(1), 53–71 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Miller, S.S., Mocanu, P.T.: Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 65(2), 289–305 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Noor, K.I.: On subclasses of close-to-convex functions of higher order. Int. J. Math. Math. Sci. 15, 279–290 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Owa, S.: On the distortion theorems I. Kyungpook. Math. J. 18, 53–59 (1978)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Owa, S., Srivastava, H.M.: Univalent and starlike generalized hypergeometric functions. Can. J. Math. 39, 1057–1077 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Padmanabhan, K.S., Parvatham, R.: Properties of a class of functions with bounded boundary rotation. Ann. Polon. Math. 31, 311–323 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pinchuk, B.: Functions with bounded boundary rotation. Isr. J. Math. 10, 7–16 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Prajapat, J.K., Aouf, M.K.: Majorization problem for certain class of \(p\)-valently analytic function defined by generalized fractional differintegral operator. Comput. Math. Appl. 63(1), 42–47 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Prajapat, J.K., Raina, R.K., Srivastava, H.M.: Some inclusion properties for certain subclasses of strongly starlike and strongly convex functions involving a family of fractional integral operators. Integral Transform. Spec. Funct. 18(9), 639–651 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ruscheweyh, S., Sheil-Small, T.: Hadamard products of Schlicht functions and the Polya–Schoenberg conjecture. Comment. Math. Helv. 48, 119–135 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ruscheweyh, S., Singh, V.: On certain extremal problems for functions with positive real parts. Proc. Am. Math. Soc. 61(2), 329–334 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sălăgean, G.S.: Subclasses of univalent functions, Complex Analysis—Fifth Romanian Finnish Seminar, Part 1 (Bucharest), Lecture Notes in Mathematics, vol. 1013, pp. 362–372. Springer, Berlin (1981)Google Scholar
  22. 22.
    Srivastava, H.M., Owa, S.: Some characterizations and distortions theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators and certain subclasses of analytic functions. Nagoya Math. J. 106, 1–28 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Srivastava, H.M., Saigo, M., Owa, S.: A class of distortion theorems involving certain operators of fractional calculus. J. Math. Anal. Appl. 131, 412–420 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tang, H., Deng, G.-T., Li, S.-H., Aouf, M.K.: Inclusion results for certain subclasses of spiral-like multivalent functions involving a generalized fractional differintegral operator. Integral Transform. Spec. Funct. 24(11), 873–883 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceMansoura UniversityMansouraEgypt
  2. 2.Department of Mathematics, Faculty of ScienceMenofia UniversityShebin El KomEgypt

Personalised recommendations