Advertisement

Afrika Matematika

, Volume 29, Issue 3–4, pp 591–600 | Cite as

T-fuzzy KU-ideals of KU-algebras

  • Tapan Senapati
Article
  • 52 Downloads

Abstract

In this paper, using t-norm T, the notion of (imaginable) T-fuzzy KU-ideals of KU-algebras are introduced and investigated their related results. Images and preimages of KU-ideals under homomorphism are investigated. Using level subsets of KU-algebras, some characterization theorems are given. The Cartesian product and T-product of T-fuzzy KU-ideals of KU-algebras are discussed.

Keywords

KU-algebra t-norm T-fuzzy KU-ideal Upper level cuts 

Mathematics Subject Classification

06F35 03G25 94D05 

References

  1. 1.
    Akram, M., Yaqoob, N., Kavikumar, J.: Interval valued \((\tilde{\theta }, \tilde{\delta })\)-fuzzy \(KU\)-ideals of \(KU\)-algebras. Int. J. Pure Appl. Math. 92(3), 335–349 (2014)CrossRefzbMATHGoogle Scholar
  2. 2.
    Akram, M., Yaqoob, N., Gulistan, M.: Cubic \(KU\)-subalgebras. Int. J. Pure Appl. Math. 89(5), 659–665 (2013)Google Scholar
  3. 3.
    Bhowmik, M., Senapati, T., Pal, M.: Intuitionistic \(L\)-fuzzy ideals of \(BG\)-algebras. Afr. Mat. 25(3), 577–590 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gulistan, M., Shahzad, M., Ahmed, S.: On \((\alpha,\beta )\)-fuzzy \(KU\)-ideals of \(KU\)-algebras. Afr. Mat. 26(3–4), 651–661 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hadzic, O., Pap, E.: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic Publishers, Dordrecht (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  7. 7.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Kluwer Academic Publishers, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Position paper I: basic analytical and algebraic properties. Fuzzy Sets Syst. 143, 5–26 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. USA 8, 535–537 (1942)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mostafa, S.M., Abd-Elnaby, M.A., Yousef, M.M.: Fuzzy ideals of \(KU\)-algebras. Int. Math. Forum. 6(63), 3139–3149 (2011)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Mostafa, S.M., Kareem, F.F.: \(N\)-fold commutative \(KU\)-Algebras. Int. J. Algebra. 8(6), 267–275 (2014)CrossRefzbMATHGoogle Scholar
  12. 12.
    Muhiuddin, G.: Bipolar fuzzy \(KU\)-subalgebras\(\setminus \)ideals of \(KU\)-algebras. Ann. Fuzzy Math. Inform. 8(3), 409–418 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Prabpyak, C., Leerawat, U.: On ideals and congruences in \(KU\)-algebras. Sci. Magna. 5(1), 54–57 (2009)MathSciNetGoogle Scholar
  14. 14.
    Prabpyak, C., Leerawat, U.: On isimorphism of \(KU\)-algebras. Sci. Magna. 5(3), 25–31 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Rosenfeld, A.: Fuzzy Groups. J. Math. Anal. Appl. 35, 512–517 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10, 313–334 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Senapati, T.: \(T\)-fuzzy \(KU\)-subalgebras of \(KU\)-algebras. Ann. Fuzzy Math. Inform. 10(2), 261–270 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Senapati, T., Bhowmik, M., Pal, M., Davvaz, B.: Atanassov’s intuitionistic fuzzy translations of intuitionistic fuzzy subalgebras and ideals in \(BCK/BCI\)-algebras. Eurasian Math. J. 6(1), 96–114 (2015)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Senapati, T., Jana, C., Bhowmik, M., Pal, M.: \(L\)-fuzzy \(G\)-subalgebras of \(G\)-algebras. J. Egypt. Math. Soc. 23, 219–223 (2015)CrossRefzbMATHGoogle Scholar
  20. 20.
    Senapati, T., Kim, C.S., Bhowmik, M., Pal, M.: Cubic subalgebras and cubic closed ideals of \(B\)-algebras. Fuzzy Inf. Eng. 7(2), 129–149 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Senapati, T., Bhowmik, M., Pal, M.: Fuzzy dot structure of \(BG\)-algebras. Fuzzy Inf. Eng. 6(3), 315–329 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Senapati, T.: Bipolar Fuzzy structure of \(BG\)-subalgebras. J. Fuzzy Math. 23(1), 209–220 (2015)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Senapati, T., Bhowmik, M., Pal, M.: Interval-valued intuitionistic fuzzy \(BG\)-subalgebras. J. Fuzzy Math. 20(3), 707–720 (2012)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Yaqoob, N., Mostafa, S.M., Ansari, M.A.: On cubic \(KU\)-ideals of \(KU\)-algebras. ISRN Algebra, p. 10 (2013) (Article ID 935905).  https://doi.org/10.1155/2013/935905
  25. 25.
    Zadeh, L.A.: Fuzzy sets. Inform. Control. 8(3), 338–353 (1965)CrossRefzbMATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Mathematics with Oceanology and Computer ProgrammingVidyasagar UniversityMidnaporeIndia

Personalised recommendations