Advertisement

Afrika Matematika

, Volume 29, Issue 3–4, pp 531–555 | Cite as

A new collocation formulation for the block Falkner-type methods with trigonometric coefficients for oscillatory second order ordinary differential equations

  • J. O. Ehigie
  • S. A. Okunuga
Article

Abstract

We consider a new class of modified block Falkner methods for the direct numerical integration of second-order initial value problems having periodic and oscillatory solutions. We will give a new collocation formulation different from that of Ramos et al. (J Comput Appl Math.  https://doi.org/10.1016/j.cam.2015.12.018, 2016) for the coefficients of a modified block Falkner-type methods, which are frequency dependent. We give an example using our new approach to derive a practical method. Furthermore, the uniform general order conditions and the investigation of the stability properties are presented. Numerical experiments are carried out to illustrate the high effectiveness of the new methods compared with some recent methods in the literature.

Keywords

Collocation formulation Falkner-type methods Oscillatory second order initial-value Falkner type methods Block multistep methods 

Mathematics Subject Classification

65L05 65L06 

References

  1. 1.
    Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Breach, Amsterdam (1998)zbMATHGoogle Scholar
  2. 2.
    Butcher, J.C.: Numerical Methods for Ordinary Differetial Equations. Wiley, England (2003)CrossRefGoogle Scholar
  3. 3.
    Chen, Z., Qiu, Z., Li, J., You, X.: Two-derivative Runge–Kutta–Nyström methods for second-order ordinary differential equations. Numer. Algorithm.  https://doi.org/10.1007/s11075-015-9979-4
  4. 4.
    Collatz, L.: The Numerical Treatment of Differential Equations. Springer, Berlin (1966)Google Scholar
  5. 5.
    Coleman, J.P.: Numerical methods for \(y^{\prime \prime }=f(x, y)\) via rational approximations for the cosine. IMA J. Numer. Anal. 9, 145–165 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Coleman, J.P., Ixaru, L.G.: P-stability and exponential fitting methods for \(y^{\prime \prime }=f(x, y)\). IMA J. Numer. Anal. 16, 179–199 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Coleman, J.P.: Mixed interpolation methods with arbitrary nodes. J. Comput. Appl. Math. 92(1), 69–83 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Coleman, J.P., Duxbury, S.C.: Mixed collocation methods for \(y^{\prime \prime }=f(x, y)\). J. Comput. Appl. Math. 126, 47–75 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fatunla, S.O.: Block methods for second order IVPs. Int. J. Comput. Math. 41, 55–63 (1991)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Non Stiff Problems, 2nd edn. Springer, Berlin (1993)zbMATHGoogle Scholar
  12. 12.
    Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Intergrator-Structure preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  13. 13.
    Ixaru, Gr, L., Berghe, G.Vanden, De Meyer, H.: Frequency evaluation in exponential fitting multistep algorithms for ODEs. J. Comput. Appl. Math. 140, 423–434 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ixaru, Gr, L., Berghe, G.Vanden: Exponential Fitting. Kluwer Academic Publishers, Dordrecht (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Jator, S. N., Swindle, S., French, R.: Trigonometrically fitted block Numerov type method for \(y^{\prime \prime }=f(x,y,y^{\prime })\). Numer. Algorithm 38(4), (2012).  https://doi.org/10.1007/s11075-012-9562-1
  16. 16.
    Krogh, F.T.: Issues in the Design of a Multistep Code. JPL Technical Report (1993). http://hdl.handle.net/2014/34958
  17. 17.
    Lie, I., Norsett, S.P.: Superconvergence for multistep collocation. Math. Comput. 52, 65–79 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Li, J., Wu, X.: Adapted Falkner-type methods solving oscillatory second-order differential equations. Numer. Algorithm. 62, 355–381 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, Amsterdam (1973)zbMATHGoogle Scholar
  20. 20.
    Lyche, T.: Chebyshevian multistep methods for ordinary differential equations. Numer. Math. 19, 65–75 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ngwane, F.F., Jator, S.N.: Block hybrid method using trigonometric basis for initial value problems with oscillating solutions. Numer. Algorithm 63(4), 713C725 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ngwane, F.F., Jator, S.N.: A trigonometrically fitted block method for Solving Oscillatory second-order initial value problems and Hamiltonian systems. International of Differential Equations, Volume 2017, Article ID 9293530, p. 14Google Scholar
  23. 23.
    Nguyen, H.S., Sidje, R.B., Cong, N.H.: Analysis of trigonometrically fitted implicit Runge–Kutta methods. J. Comput. Appl. Math. 198, 187–207 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Nyström, E.J.: Ueber die numerische Integration von Differentialgleichungen. Acta Soc. Sci. Fenn. 50, 1–54 (1925)Google Scholar
  25. 25.
    Ozawa, K.: A four-stage implicit Runge–Kutta–Nystrom method with variable coefficients for solving periodic initial value problems. Jpn. J. Ind. Appl. Math. 16, 2546 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Paternoster, B.: Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday. Comput. Phys. Commun. 183, 2499–2512 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flan- nery, B.P.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York (2007)zbMATHGoogle Scholar
  28. 28.
    Ramos, H., Lorenzo, C.: Review of explicit Falkner methods and its modifications for solving special second-order I.V.P.s. Comput. Phys. Commun. 181, 1833–1841 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ramos, H., Mehta, A., Vigo-Aguiar, J.: A unified approach for the development of k-step block Falkner-type methods for solving general second-order initial-value problems in ODEs. J. Comput. Appl. Math. (2016).  https://doi.org/10.1016/j.cam.2015.12.018
  30. 30.
    Shampine, L.F., Watts, H.A.: Block implicit one-step methods. Math. Comput. 23, 731–40 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Vanden, B.G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially-fitted explicit Runge–Kutta methods. Comp. Phys. Commun. 123, 7–15 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Vigo-Aguiar, J., Ramos, H.: Variable stepsize implementation of multistep methods for \(y^{\prime \prime } = f (x, y, y^{\prime })\). J. Comput. Appl. Math. 192, 114–131 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Van de Vyver, Hans: Frequency evaluation for exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 184, 442–463 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Vigo-Aguiar, Jesùs, Ramos, Higinio: On the choice of the frequency in trigonometrically-fitted methods for periodic problems. J. Comput. Appl. Math. 277, 94–105 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Wang, B., Iserles, A., Wu, X.: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16(1), 151–181 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Weinberger, H.F.: A First Course in Partial Differential Equations with Complex Variables and Transform Methods. Dover Publications Inc., New York (1965)zbMATHGoogle Scholar
  37. 37.
    You, X., Zhao, J., Yang, H., Fang, Y., Wu, X.: Order conditions for RKN methods solving general second-order oscillatory systems. Numer. Algorithm 66, 147–176 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.College of HorticultureNanjing Agricultural UniversityNanjingChina
  2. 2.Department of MathematicsUniversity of LagosLagosNigeria

Personalised recommendations