Afrika Matematika

, Volume 29, Issue 3–4, pp 509–529 | Cite as

Some operators on interval-valued hesitant fuzzy soft sets

Article
  • 22 Downloads

Abstract

The main aim of this paper is to introduced the operations “Union”, “Intersection” and four operators namely \(\tilde{O_1},\tilde{ O_2},\tilde{ O_3},\tilde{ O_4}, \) on interval-valued hesitant fuzzy soft sets and discuss some of their properties.

Keywords

Fuzzy soft sets Interval-valued hesitant fuzzy sets Hesitant fuzzy soft sets 

Mathematics Subject Classification

03E72 

References

  1. 1.
    Atanassove, K.T.: Intuitionistic Fuzzy Sets. Springer Physica, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)CrossRefMATHGoogle Scholar
  3. 3.
    Babitha, K.V., Johan, S.J.: Hesitant fuzzy soft sets. J. New Results Sci. 3, 98–107 (2013)Google Scholar
  4. 4.
    Çaǧman, N., Enginoǧlu, N.S.: Soft set theory and uni-int decision making. Eur. J. Oper. Res. 207, 848–855 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, N., Xu, Z., Xia, M.: Interval-valued hesitant preference relations and their applications to group decision making. Knowl. Based Syst. 37, 528–540 (2013)CrossRefGoogle Scholar
  6. 6.
    Chiao, Kuo-Ping: Fundamental properties of interval vector max-norm. Tamsui Oxf. J. Math. 18(2), 219–233 (2002)MathSciNetMATHGoogle Scholar
  7. 7.
    Dwyer, P.S.: Linear Computation. Wiley, New York (1951)Google Scholar
  8. 8.
    Dwyer, P.S.: Errors of matrix computation, simultaneous equations and eigenvalues. National Bureu of Standards. Appl. Math. Ser. 29, 49–58 (1953)Google Scholar
  9. 9.
    Fischer, P.S.: Automatic propagated and round-off error analysis. In: Paper Presented at the 13th National Meeting of the Association of Computing Machinery (1958)Google Scholar
  10. 10.
    Maji, P.K., Biswas, R., Roy, R.: An application of soft sets in a decision making problem. Comput. Math. Appl. 44, 1077–1083 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Maji, P.K., Biswas, R., Roy, R.: Soft set theory. Comput. Math. Appl. 45, 555–562 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Maji, P.K., Biswas, R., Roy, A.R.: Fuzzy soft sets. J. Fuzzy Math. 9(3), 589–602 (2001)MathSciNetMATHGoogle Scholar
  13. 13.
    Molodstov, D.A.: Soft set theory-first result. Comput. Math. Appl. 37, 19–31 (1999)MathSciNetGoogle Scholar
  14. 14.
    Molodtsov, D.A., Leonov, V.Y., Kovkov, D.V.: Soft sets technique and its application. Nechetkie Sistemy Myagkie Vychisleniya 1(1), 8–39 (2006)MATHGoogle Scholar
  15. 15.
    Moore, R.E.: Automatic Error Analysis in Digital Computation, LSMD-48421. Lockheed Missiles and Space Company, Sunnyvale (1959)Google Scholar
  16. 16.
    Moore, R.E., Yang, C.T.: Interval Analysis I, LMSD-285875. Lockheed Missiles and Space Company, Sunnyvale (1962)Google Scholar
  17. 17.
    Moore, R.E., Yang, C.T.: Theory of an interval algebra and its application to numeric analysis. RAAG Memories II. Gaukutsu Bunken Fukeyu-kai, Tokyo (1958)Google Scholar
  18. 18.
    Thakur, G.S., Thakur, R., Singh, R.: New hesitant fuzzy operators. Fuzzy Inf. Eng. 6, 379–392 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)MATHGoogle Scholar
  20. 20.
    Torra, V., Narukawa, Y.: On hesitant fuzzy sets and decision. In: Proceeding of the 18th IEEE International Conference on Fuzzy Systems, Jeju Island, pp. 1378–1382 (2009)Google Scholar
  21. 21.
    Verma, R., Sharma, B.D.: New operations over hesitant fuzzy sets. Fuzzy Inf. Eng. 2, 129–146 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wang, J., Li, X., Chen, X.: Hesitant fuzzy soft sets with application in multicrteria group decision making problems. Sci. World J. 2014, 1–14 (2015)Google Scholar
  23. 23.
    Xu, Z.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15(6), 1179–1187 (2007)CrossRefGoogle Scholar
  24. 24.
    Xu, Z., Da, Q.L.: The uncertain OWA operator. Int. J. Intell. Syst. 17, 569–575 (2002)CrossRefMATHGoogle Scholar
  25. 25.
    Xu, Z., Xia, M.: Distance and similarity measures for hesitant fuzzy sets. Inf. Sci. 181, 2128–2138 (2011)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefMATHGoogle Scholar
  27. 27.
    Zhang, H., Xiong, L., Ma, W.: On interval-valued hesitant fuzzy soft sets. Math. Probl. Eng. 2015, 17.  https://doi.org/10.1155/2015/254764 (2015)

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsBahona CollegeJorhatIndia
  2. 2.Department of MathematicsRajiv Gandhi UniversityDoimukhIndia

Personalised recommendations