Afrika Matematika

, Volume 29, Issue 3–4, pp 477–497 | Cite as

Median ranked acceptance sampling plans for exponential distribution

Article
  • 24 Downloads

Abstract

We develop a ranked acceptance sampling plan by attribute for exponential distribution assuming that the life test is truncated at a pre-assigned time. Two main requirements are essential for the proposed ranked sampling plans; namely; the life times of the test units are assumed to follow the exponential distribution; and the data are selected by using a free cost sampling method, the median ranked set sampling scheme from a large lot. The main advantage of using the median rank set sampling is to reduce producer’s risk, and it is one of the ranked scheme that produces a judgment order statistics that are mutually independent and identically distributed random variables to meet the binomial theory assumptions. The distribution function characterization under the median ranked set sampling scheme is derived assuming that the set size is known; then the minimum sample size necessary to ensure the specified average life are obtained and the operating characteristic values of the sampling plans based on the ranked samples and producer’s risk are presented. A comparisons with sampling plan based on simple random sampling and an illustrative example are given.

Keywords

Median ranked set sampling Acceptance sampling plans Exponential distribution Operating characteristic function value Producer’s risk Consumer’s risk 

Mathematics Subject Classification

60D05 62G30 

Notes

Acknowledgements

The authors would like to thank the chief editor and all referees for their helpful comments and valuable suggestions which improved the presentation of this paper.

References

  1. 1.
    Al-Nasser, A.D., Gogah, F.S.: On using the median ranked set sampling for developing reliability test plans under generalized exponential distribution. Pak. J. Stat. Oper. Res. 13(4), 757–774 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Al-Nasser, A.D., Al-Omari, A.I.: Acceptance sampling plan based on truncated life tests for exponentiated Frechet distribution. J. Stat Manag. Syst. 16(1), 13–24 (2013)CrossRefGoogle Scholar
  3. 3.
    Al-Nasser, A.D.: L ranked set sampling: a generalization procedure for robust visual sampling. Commun. Stat. Simul. Comput. 36, 33–44 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Al-Nasser, A.D., Bani-Mustafa, A.: ARobust extreme ranked set sampling. J. Stat. Comput. Simul. 79, 859–867 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Al-Nasser, A.D., Al-Omari, A.I.: Information theoretic weighted mean based on truncated ranked set sampling. J. Stat. Theory Pract. 9(2), 313–329 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Al-Omari, A.I.: Acceptance sampling plan based on truncated life tests for three parameter kappa distribution. Stoch. Qual. Control 29(1), 53–62 (2014)Google Scholar
  7. 7.
    Al-Omari, A.I.: Time truncated acceptance sampling plans for generalized inverted exponential distribution. Electron. J. Appl. Stat. Anal. 8(1), 1–12 (2015)MathSciNetGoogle Scholar
  8. 8.
    Al-Talib, M., Al-Nasser, A.D.: Estimation of Gini-Index from continuous distribution based on ranked set sampling. Electron. J. Appl. Stat. Anal. 1, 37–48 (2008)MATHGoogle Scholar
  9. 9.
    Aslam, M., Kundu, D., Ahmad, M.: Time truncated acceptance sampling plans for generalized exponential distribution. J. Appl. Stat. 37(4), 555–566 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Aslam, M., Azam, M., Lio, Y.L., Jun, C.-H.: Two-stage group acceptance sampling plan for Burr Type X percentiles. J. Test. Eval. 41(4), 525–533 (2013)CrossRefGoogle Scholar
  11. 11.
    Baklizi, A., El-Masri, A., Al-Nasser, A.D.: Acceptance sampling plans in the Raleigh Model. Korean Commun. Stat. 12(1), 11–18 (2005)Google Scholar
  12. 12.
    Balakrishnan, N., Leiva, V., López, J.: Acceptance sampling plans from truncated life tests based on the generalized Birnbaum–Saunders distribution. Commun. Stat. Simul. Comput. 36, 643–656 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Balakrishnan, N., Basu, A.P.: Exponential Distribution: Theory, Methods and Applications. Wiley, New York (1995)MATHGoogle Scholar
  14. 14.
    Ciavolino, E., Al-Nasser, A.D.: Information theoretic estimation improvement to the nonlinear Gompertz’s Model based on ranked set sampling. J. Appl. Quant. Methods 5(2), 317–330 (2010)Google Scholar
  15. 15.
    Epstein, B.: Truncated life tests in the exponential case. Ann. Math. Stat. 25, 555–564 (1954)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    David, H., Nagaraja, H.: Order Statistics, 3rd edn. Wiley, New Jersey (2003)CrossRefMATHGoogle Scholar
  17. 17.
    Jemain, A., Al-Omari, A.I.: Double quartile ranked set samples. Pak. J. Stat. 22, 217–228 (2006)MathSciNetMATHGoogle Scholar
  18. 18.
    Jemain, A., Al-Omari, A., Ibrahim, K.: Some variations of ranked set sampling. Electron. J. Appl. Stat. Anal. 1(1), 1–15 (2008)MATHGoogle Scholar
  19. 19.
    Johnson, N., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions: vol. 1. Wiley, New York (1994)MATHGoogle Scholar
  20. 20.
    Habib, E.: Linear moments study under ranked set sampling. Electron. J. Appl. Stat. Anal. 3(2), 134–149 (2010)Google Scholar
  21. 21.
    Hussain, J., Razzaque Mughal, A., Pervaiz, M.K., Aslam, M., Rehman, A.: Economic reliability group acceptance sampling plans for lifetimes following a generalized exponential distribution. Electron. J. Appl. Stat. Anal. 4(2), 124–130 (2011)MathSciNetGoogle Scholar
  22. 22.
    Kantam, R.R.L., Rosaiah, K., Rao, G.S.: Acceptance sampling based on life tests: log-logistic models. J. Appl. Stat. 28(1), 121–128 (2001)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Klufa, J.: Exact calculation of the Dodge-Romig LTPD single sampling plans for inspection by variables. Stat. Pap. 51(2), 297–305 (2010)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    McIntyre, G.A.: A method of unbiased selective sampling using ranked sets. Aust. J. Agric. Res. 3, 385–390 (1952)CrossRefGoogle Scholar
  25. 25.
    Muttlak, H.: Median ranked set sampling. J. Appl. Stat. Sci. 6, 245–255 (1997)MATHGoogle Scholar
  26. 26.
    Pagano, M., Valadez, J.J.: Commentary: understanding practical lot quality assurance sampling. Int. J. Epidemiol. 39(1), 69–71 (2010)CrossRefGoogle Scholar
  27. 27.
    Raqab, M., Ahsanullah, M.: Estimation of the location and scale parameters of generalized exponential distribution based on order statistics. J. Stat. Comput. Simul. 69, 109–12 (2001)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Schilling, E.G., Neubauer, D.V.: Acceptance Sampling in Quality Control, 2nd edn. CRC Press, Boca Raton (2009)MATHGoogle Scholar
  29. 29.
    Sobel, M., Tischendrof, J.A.: Acceptance sampling with new life test objectives. In: Proceedings of the fifth national symposium on reliability and quality control, pp. 108–118. Philadelphia, Pennsylvania (1959)Google Scholar

Copyright information

© African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Statistics, Science FacultyYarmouk UniversityIrbidJordan

Personalised recommendations