Skip to main content
Log in

Calculations of the drag coefficient of circular, square and rectangular cylinders using the lattice Boltzmann method with variable lattice speed of sound

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

In this work, we studied the calculation of the drag coefficient using the lattice Boltzmann method with variable lattice speed of sound. The modified method of calculation the drag coefficient that includes the kinematic viscosity dependence was proposed. Calculations were based on the variable lattice speed of sound values that depend on the kinematic viscosity and the computational grid resolution. Shown the influence of the Reynolds number on the flow pattern and on the drag coefficient. The relation between the lattice Mach number and the computational grid resolution have been shown. The influence of the lattice Mach number on the accuracy of the numerical results was studied in detail. Shown that proposed method is more efficient because the researcher can set the kinematic viscosity of the fluid and the computational grid resolution at the same time. Therefore there is an opportunity to control the accuracy of the numerical results and the modeling time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agrawal, T., Lin, C.: Implementation of an incompressible lattice Boltzmann model on GPU to simulate Poiseuille flow. In: Proceedings of the Fortieth National Conference on Fluid Mechanics and Fluid Power, pp. 991–995 (2013)

  2. Barakos, G., Mitsoulis, E.: Numerical simulation of viscoelastic flow around a cylinder using an integral constitutive equation. J. Rheol. 39(6), 1279–1292 (1995)

    Article  Google Scholar 

  3. Calhoun, D.: A Cartesian grid method for solving the two-dimentional streamfunction-vorticity equations in irregular regions. J. Comput. Phys. 176, 231–275 (2002). doi:10.1006/jcph.2001.6970

    Article  MathSciNet  MATH  Google Scholar 

  4. Dennis, S.C.R., Chang, G.: Numerical solutions for steady flow past a circular cylinder at Reynolds number up to 100. J. Fluid Mech. 42, 471–489 (1970). doi:10.1017/S0022112070001428

    Article  MATH  Google Scholar 

  5. Fornberg, B.: A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech. 98(4), 819–855 (1980)

    Article  MATH  Google Scholar 

  6. Hong, X., Di, W., Yuhe, S.: Research of micro-rectangular-channel flow based on Lattice Boltzmann method. Res. J. Appl. Sci. Eng. Technol. 6(14), 2520–2525 (2013)

    Google Scholar 

  7. Horwitz, J.A.: Lattice Boltzmann Simulations of Multiphase Flows. University of Illinois at Urbana-Champaign (2013)

  8. Kupershtokh, A.L.: Three-dimensional simulations of two-phase liquid-vapor systems on GPU using the lattice Boltzmann method. Numer. Methods Programm 13, 130–138 (2012)

    Google Scholar 

  9. Martinez, D.O., Matthaeus, W.H., Chen, S., Montgomery, D.C.: Comparison of spectral method and lattice Boltzmann simulations of two-dimentional hydrodynamics. Phys. Fluids. 6(3), 1285–1298 (1994)

    Article  MATH  Google Scholar 

  10. Mohamad, A.A.: Lattice Boltzmann Method. Fundamentals and Engineering Applications with Computer Codes. Springer, London (2011)

    MATH  Google Scholar 

  11. Mussa, M.: Numerical Simulation of Lid-Driven Cavity Flow Using the Lattice Boltzmann Method. In: Proceedings of the 13th WSEAS Int. Conf. on Applied Mathematics, pp. 236–240 (2008)

  12. Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)

    Article  MATH  Google Scholar 

  13. Peruman, D.A., Kumar, V.S., Dass, A.K.: Lattice Boltzmann simulation over a circular cylinder at moderate Reynolds numbers. Therm. Sci. 18(4), 1235–1246 (2014). doi:10.2298/TSCI110908093A

    Article  Google Scholar 

  14. Peruman, D.A., Kumar, V.S., Dass, A.K.: Numerical simulation of viscous flow over a square cylinder using Lattice Boltzmann Method. Math. Phys. doi:10.5402/2012/630801 (2012)

  15. Rettinger, C.: Fluid Flow Simulation using the Lattice Boltzmann Method with multiple relaxation times. Bachelor Thesis. Friedrich-Alexander Universuty Erlander-Nuremberg (2013)

  16. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, Oxford (1985)

  17. Strang, G, Fix, G.J.: An Analysis of the Finite Element Method. Prentice Hall, USA (1973)

  18. Succi, S., Benzi, R., Higuera, F.: The Lattice Boltzmann equation: a new tool for computational fluid-dynamics. Phys. D Nonlinear Phenom. 47, 219–230 (1991)

    Article  Google Scholar 

  19. Sucop, M.: Lattice Boltzmann Modeling. An Introduction for Geoscientists and Engineers. Springer, New York (2006)

    Google Scholar 

  20. Tritton, D.J.: Experiments on the flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 6(4), 547–555 (1959)

    Article  MATH  Google Scholar 

  21. Van Dyke, M.: An Album of Fluid Mechanics. The Parabolic Press, Stanford (1982)

    Google Scholar 

  22. Wang, L.: Direct simulation of viscous flow in a wavy pipe using the lattice Boltzmann approach. Int. J. Eng. Syst. Model. Simul. 1(1), 20–29 (2008)

  23. Wolf-Gladrow, D.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models—An Introduction. Alfred Wegener Institute for Polar and Marine, Bremerhaven (2005)

    MATH  Google Scholar 

  24. Yu, D., Mei, R., Luo, L., Shyy, W.: Viscous flow computations with the method of lattice Boltzmann equation. Progress Aerosp. Sci. 39, 329–367 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem Ostapenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostapenko, A., Bulanchuk, G. Calculations of the drag coefficient of circular, square and rectangular cylinders using the lattice Boltzmann method with variable lattice speed of sound. Afr. Mat. 29, 137–147 (2018). https://doi.org/10.1007/s13370-017-0531-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-017-0531-7

Keywords

Mathematics Subject Classification

Navigation