Skip to main content

Numerical simulation of steel solidification in continuous casting

Abstract

The present study deals with the numerical simulation of steel solidification in continuous casting. We consider a semi-discretization with respect to the time of the studied evolution problem; then we have to solve a sequence of stationary coupled problems. So, due to the fact that the temperature is assumed to be positive, after reformulation of the problem into a variational inequality, we study under appropriate assumptions the existence and uniqueness of the solution of the stationary coupled problems. We also consider a multivalued formulation of the same problem which allows to analyze the behavior of the iterative relaxation algorithms used for the solution of the discretized problems. Finally the numerical experiments are presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. i.e. a proper function from V to \( ]- \infty , + \infty ]\) not identically equal to \(+ \infty \).

  2. i.e. a bilinear form, from \(V \times {V}^{\prime }\) onto \(\mathfrak {R}\).

References

  1. Axelson, O., Barker, V.A.: Finite element solution of boundary value problems, theory and computation. Academic Press, USA (1984)

    Google Scholar 

  2. Barbu, V. : Nonlinear semigroups and differential equations in Banach spaces, Noordhoff International Publishing (1976)

  3. Briozzo, A.C., Natale, M.F., Tarzia, D.A.: Determination of unknown thermal coeffcients for Storm’s-type materials through a phase-change process. Int. J. Non Linear Mech. 34, 324–340 (1999)

    Article  MATH  Google Scholar 

  4. Chau, M., Couturier, R., Bahi, J., Spiteri, P.: Parallel solution of the obstacle problem in Grid environments. Int. J. High Perform. Comput. Appl. 25(4), 488–495 (2011)

    Article  Google Scholar 

  5. Chau, M., Tauber, C., Spiteri, P.: Parallel Schawarz alternating methods for anisotropic diffusion of speckled medical images. Numer. Algorithms 51, 85–114 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  6. Comini, G., Del Guiduce, S., Lewwis, R.W., Zienkiewicz, O.C.: Finite element solution of non-linear heat conduction problems with special reference to phase change. Int. J. Numer. Methods Eng 8, 613–624 (1974)

    Article  Google Scholar 

  7. Costes, F.: Modélisation thermomécanique tridimensionnelle par éléments finis de la coulée continue d’acier. Thèse de doctorat, ENSM Paris (2004)

  8. Duvaut, G., Lions, J.L. : Les inéquations en mécanique et physique, Dunod (1972)

  9. El Tarazi, M.: Some convergence results for asynchronous algorithms. Numer. Math. 39, 325–340 (1982)

    MathSciNet  Article  MATH  Google Scholar 

  10. Fortin, A., Garon, A.: Les éléments finis de la théorie à la pratique. Ecole Polytechnique de Montréal (1999)

  11. George, P.L.: Simulation Numérique d’un problème Parabolique non linéaire Trempe d’un Bareau métallique, INRIA (1982)

  12. Glowinski. R., Lions, J.L., Tremolieres, R.: Analyse numérique des inéquations variationnelles, Dunod, tome 1 and 2 (1976)

  13. Kandeil, A.Y., Tag, I.A., Hassab, M.A.: Solidification of Steel billets in continuous casting. Eng. J. Qatar Univ. 4, 103–120 (1991)

    Google Scholar 

  14. Lewis, R.W., Ravidrans, K.: Finite element simulation of metal casting. Int. J. Numer. Methods Eng. 47(1–3), 29–59 (2000)

    Article  MATH  Google Scholar 

  15. Miellou, J.C.: Algorithmes de relaxation chaotique à retards. RAIRO Anal. Numérique R1, 55–82 (1975)

    MATH  Google Scholar 

  16. Miellou, J.C., Spiteri, P. : Un critère de convergence pour des méthodes générales de point fixe. M2AN 19, 645–669 (1985)

  17. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  18. Tauber, C., Spiteri, P., Batatia, H.: Iterative methods for anisotropic diffusion of speckled medical images. Appl. Num. Math. 60, 1115–1130 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  19. Ziane-Khodja, L., Chau, M., Couturier, R., Bahi, J., Spiteri, P.: Parallel solution of American option derivatives on GPU clusters. Comp. Math. Appl. 65, 1830–1848 (2013)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgments

This study was possible thanks to a grant conceded to Miss Ghania Khenniche by the Algerian govermment. Also Miss Ghania Khenniche gratefully acknowledges support provided by the National Polytechnic Institute of Toulouse and the Institute of Research and computer science of Toulouse during her stage in France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Spiteri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khenniche, G., Spiteri, P., Bouhouche, S. et al. Numerical simulation of steel solidification in continuous casting. Afr. Mat. 28, 417–441 (2017). https://doi.org/10.1007/s13370-016-0454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-016-0454-8

Keywords

  • Continuous casting
  • Solidification of steel
  • Sparse nonlinear systems
  • Relaxation method

Mathematics Subject Classification

  • 58J35
  • 35B09
  • 58J26
  • 35R70