Afrika Matematika

, Volume 27, Issue 3–4, pp 393–408 | Cite as

Interval valued L-fuzzy cosets of nearrings and isomorphism theorems

  • Syam Prasad Kuncham
  • B. Jagadeesha
  • Babushri Srinivas KedukodiEmail author


In this paper, we study homomorphic images of interval valued L-fuzzy ideals of a nearring. If \(f:N_1\rightarrow N_2\) is an onto nearring homomorphism and \(\hat{\mu }\) is an interval valued L-fuzzy ideal of \(N_2\) then we prove that \(f^{-1}(\hat{\mu })\) is an interval valued L-fuzzy ideal of \(N_1\). If \(\hat{\mu }\) is an interval valued L-fuzzy ideal of \(N_1\) then we show that \(f(\hat{\mu })\) is an interval valued L-fuzzy ideal of \(N_2\) whenever \(\hat{\mu }\) is invariant under \(f\) and interval valued t-norm is idempotent. Finally, we define interval valued L-fuzzy cosets and prove isomorphism theorems.


Nearring Ideal Coset t-norm t-conorm 



We thank the anonymous referees and the editor for their constructive comments and suggestions which has improved the paper. All authors acknowledge Manipal University for the encouragement. The second author acknowledges St. Joseph Engineering College, Mangalore, India for the encouragement.


  1. 1.
    Acar, U.: On L-fuzzy prime submodules. Hacet. J. Math. Stat. 34, 17–25 (2005)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aichinger, E., Binder, F., Ecker, J., Mayr, P., Nobauer, C.: SONATA-system of near-rings and their applications. GAP package. 2.6, (2012)Google Scholar
  3. 3.
    Akram, M., Dar, K.H.: Fuzzy left h-ideal in hemirings with respect to a s-norm. Int. J. Comput. Appl. Math. 1, 7–14 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Akram, M., Yaqoob, N., Kavikumar, J.: Interval-valued \((\theta,\delta )\)-fuzzy KU-ideals of KU-algebras. Int. J. Pure Appl. Math. 92(3), 335–349 (2014)CrossRefzbMATHGoogle Scholar
  5. 5.
    Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules, 2nd edn. Springer-Verlag, Berlin (1992)CrossRefzbMATHGoogle Scholar
  6. 6.
    Aygunoglu, A., Varol, B.P., Cetkin, V., Aygun, H.: Interval-valued intuitionistic fuzzy subgroups based on interval-valued double t-norm. Neural Comput. Appl. 21(1), 207–214 (2012)CrossRefGoogle Scholar
  7. 7.
    Baksi, M.: Generalized fuzzy filters in noncommutative residuated lattices. Afr. Mat. 25, 289–305 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bertoluzza, C., Doldi, V.: On the distributivity between t-norms and t-conorms. Fuzzy Sets Syst. 142, 85–104 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bhakat, S.K., Das, P.: Fuzzy subrings and ideals redefined. Fuzzy Sets Syst. 81, 383–393 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bhavanari, S.: Nearrings, Fuzzy Ideals and Graph Theory. Chapman and Hall/ CRC Press, New York (2013)zbMATHGoogle Scholar
  11. 11.
    Bhavanari, S., Kuncham, S.P., Kedukodi, B.S.: Graph of a nearring with respect to an ideal. Commun. Algebra. 38, 1957–1962 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bhowmik, M., Snenpathi, M., Pal, M.: Intuitionistic L-fuzzy ideals of BG-algebras. Afr. Mat. 25, 577–590 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Booth, G.L., Groenewald, N.J., Veldsman, S.: A Kurosh-Amitsur prime radical for near-rings. Commun. Algebra 18(9), 3111–3122 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Davvaz, B.: Fuzzy ideals of nearring with interval valued membership functions. J. Sci. Islam. Repub. Iran. 12, 171–175 (2001)MathSciNetGoogle Scholar
  15. 15.
    Davvaz, B.: Fuzzy R-subgroups with thresholds of nearring and implication operators. Soft Comput. 12, 875–879 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Davvaz, B., Fotea, V.L.: Applications of interval valued fuzzy n-ary polygroups with respect to t-norms (t-conorms). Comput. Math. Appl. 57, 1413–1424 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dutta, T.K., Kar, S., Purkait, S.: Interval-valued fuzzy k-ideals and k-regularity of semirings. Fuzzy Inform. Eng. 5(2), 235–251 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fisal, Yaqoob, N., Ghareeb, A.: Left regular AG -groupoids in terms of fuzzy interior ideals. Afr. Mat. 24, 577–587 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gratzer, G.: Lattice Theory: Foundation. Birkhauser verlag, Basel (2011)CrossRefzbMATHGoogle Scholar
  21. 21.
    Groenewald, N.J.: Completely prime radical in near-rings. Acta. Math. Hung. 51(3), 301–305 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Groenewald, N.J.: Different prime ideals in near-rings. Commun. Algebra. 19, 2667–2675 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gu, W.X., Li, S.Y., Chen, D.G., Lu, Y.H.: The generalized t-norms and TLPF-groups. Fuzzy Sets Syst. 72, 357–364 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Guijun, W., Xiapping, L.: Interval-valued fuzzy subgroups induced by T-triangular norms. BUSEFAL 65, 80–84 (1996)Google Scholar
  25. 25.
    Jagadeesha, B., Kedukodi, B.S., Kuncham, S.P.: Interval valued L-fuzzy ideals based on t-norms and t-conorms. J. Intell. Fuzzy Syst. (2015). doi: 10.3233/IFS-151541
  26. 26.
    Jun, Y.B., Neggers, J., Kim, H.S.: Normal L-fuzzy ideals in semirings. Fuzzy Sets Syst. 82(3), 383–386 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Jun, Y.B., Neggers, J., Kim, H.S.: On L-fuzzy ideals in semirings I. Czechoslovak Math. J. 48(4), 669–675 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kedukodi, B.S., Jagadeesha, B., Kuncham, S.P.: Automorphisms, t-norms and t-conorms on a lattice (communicated)Google Scholar
  29. 29.
    Kedukodi, B.S., Jagadeesha, B., Kuncham, S.P.: Interval valued Equiprime, 3-prime and C-prime L-fuzzy ideals of nearrings (communicated)Google Scholar
  30. 30.
    Kedukodi, B.S., Kuncham, S.P., Bhavanari, S.: C-prime fuzzy ideals of nearrings. Soochow J. Math. 33, 891–901 (2007)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Kedukodi, B.S., Kuncham, S.P., Bhavanari, S.: Equiprime, 3-prime and c-prime fuzzy ideals of nearrings. Soft. Comput. 13, 933–944 (2009)CrossRefzbMATHGoogle Scholar
  32. 32.
    Kedukodi, B.S., Kuncham, S.P., Bhavanari, S.: Reference points and roughness. Inform. Sci. 180, 3348–3361 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Khan, M., Aziz, T., Yaqoob, N.: Generalized interval-valued fuzzy right ideals of Abel Grassmann’s groupoids. Analele Universitatii din Oradea Fascicola Matematica 21(1), 153–160 (2014)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Khan, A., Jun, Y.B., Shabir, M.: A study of generalized fuzzy ideals in ordered semigroups. Neural Comput. Appl. 21(1), S69–S78 (2012)CrossRefGoogle Scholar
  35. 35.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Netherlands (2000)CrossRefzbMATHGoogle Scholar
  36. 36.
    Koc, A., Balkanay, E.: On \(\theta \)-euclidean L-fuzzy ideals of rings. Turkish J. Math. 28, 137–142 (2004)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Li, X., Wang, G.: TH-interval-valued fuzzy subgroups. Fuzzy Syst. Math. 12(1), 60–65 (1998)zbMATHGoogle Scholar
  38. 38.
    Pilz, G.: Near-Rings. North Hollond, Amsterdam (1983)zbMATHGoogle Scholar
  39. 39.
    Veldsman, S.: On equiprime near-rings. Commun. Algebra. 20(9), 2569–2587 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Xiapping, L., Guijun, W.: The SH interval-valued fuzzy subgroups. Fuzzy Sets Syst. 112, 319–325 (2000)CrossRefGoogle Scholar
  41. 41.
    Yaqoob, N.: Interval-valued intuitionistic fuzzy ideals of regular LA-semigroups. Thai J. Math. 11(3), 683–695 (2013)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Yaqoob, N., Akram, M., Aslam, M.: Intuitionistic fuzzy soft groups induced by (t, s)-norm. Indian J. Sci. Technol. 6(4), 4282–4289 (2013)Google Scholar
  43. 43.
    Yaqoob, N., Chinram, R., Ghareeb, A., Aslam, M.: Left almost semigroups characterized by their interval valued fuzzy ideals. Afr. Mat. 24, 231–245 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Yaqoob, N., Khan, M., Akram, M., Khan, A.: Interval valued intuitionistic \((S, T)\)-fuzzy ideals of ternary semigroups. Indian J. Sci. Technol. 6(11), 5418–5428 (2013)Google Scholar
  45. 45.
    Zaid, S.A.: On fuzzy subnear-rings and ideals. Fuzzy Sets Syst. 44, 139–146 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© African Mathematical Union and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Syam Prasad Kuncham
    • 1
  • B. Jagadeesha
    • 1
  • Babushri Srinivas Kedukodi
    • 1
    Email author
  1. 1.Department of Mathematics, Manipal Institute of TechnologyManipal UniversityManipalIndia

Personalised recommendations