Skip to main content

Advertisement

Log in

Mathematical modelling and exact solution of steady fully developed mixed convection flow in a vertical micro-porous-annulus

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

This work analyzes the behaviors of fully developed mixed convection flow of an incompressible and viscous fluid in a vertical micro-porous-annulus (MPA) taking into account the velocity slip and temperature jump at the outer surface of inner porous cylinder and inner surface of outer porous cylinder. The present study explores the effects of the suction/injection, mixed convection, the Knudsen number, Prandtl number and the radius ratio on the MPA hydrodynamic and thermal behaviours. It is interesting to remark that as suction/injection on the MPA increases, the fluid velocity and temperature is enhanced. In addition, the rate of heat transfer at outer surface of inner porous cylinder decrease with increase in Knudsen number for suction at the inner porous cylinder and simultaneous injection at the outer porous cylinder while the result is just contrast at inner surface of outer porous cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(C_p =\) :

Specific heat at constant pressure

\(D_h =\) :

Hdraulic diameter \([{2( {r_2 -r_1 })}]\)

\(F_v =\) :

Tangential momentum accommodation coefficient

\(F_t =\) :

Thermal accommodation coefficient

\(g=\) :

Gravitational acceleratioin

\(Gr=\) :

Grashof number

\(GR=\) :

Mixed convection parameter \(( {Gr/Re})\)

\(h=\) :

Convective heat transfer coefficient

\(k=\) :

Thermal conductivity

\(Kn=\) :

Knudsen number

\(Nu_0 =\) :

Rate of heat transfer at the outer surface of the inner porous cylinder

\(Nu_1 =\) :

Rate of heat transfer at the inner surface of the outer porous cylinder

\(P=\) :

Pressure difference

\(Pr=\) :

Prandtl number

\(Re=\) :

Reynolds number

\(r^*=\) :

Ratio of radius \((r_1 /r_2 )\)

\(r_1 =\) :

Radius of the inner porous cylinder

\(r_2 =\) :

Radius of the outer porous cylinder

\(S =\) :

Suction/injection parameter

\(T=\) :

Fluid temperature

\(T_0 =\) :

Reference fluid temperature

\(u=\) :

Axial velocity

\(U=\) :

Dimensionless axial velocity

\(V_0 =\) :

Constant suction/injection velocity

\(z,r=\) :

Axial and radial coordinate, respectively

\(Z,R=\) :

Dimensionless axial and radial coordinate, respectively

\(\alpha =\) :

Thermal diffusivity

\(\beta =\) :

Thermal expansion coefficient

\(\beta _t ,\beta _\nu =\) :

Dimensionless variables

\(\gamma =\) :

Ratio of specific heats (\(C_p /C_v )\)

\(\lambda =\) :

Molecular mean free path

\(\mu =\) :

Dynamic viscosity

\(\theta =\) :

Dimensionless temperature

\(\rho _0 =\) :

Density

\(\nu =\) :

Fluid kinematic viscosity

\(1=\) :

Value on inner cylinder

\(2=\) :

Value on outer cylinder

\(b=\) :

Bulk value

\(s_1 =\) :

Fluid properties on inner cylinder

\(s_2 =\) :

Fluid properties on outer cylinder

\(m=\) :

Mean value

References

  1. Womac, D.J., Incropera, F.P., Ramadhyani, S.: Correlating equations for impingement cooling of small heat sources with multiple circular liquidjets. ASME J. Heat Transfer 116, 482–486 (1994)

    Article  Google Scholar 

  2. Darabi, J., Ekula, K.: Development of a chip-integrated micro cooling device. Microelectron. J. 34, 1067–1074 (2003)

    Article  Google Scholar 

  3. Amon, C.H., Murthyj, Y., and Yao S.C.: MEMS enabled thermal management of high heat flux devices EDIFICE: embedded droplet impingement for integrated cooling of electronics, Exp. Therm. Fluid Sci. pp. 231–242. (2001)

  4. Schaaf, S.A., Chambre, P.L.: Flow of Rarefied Gases. Princeton University Press, Princeton (1961)

    MATH  Google Scholar 

  5. Chen, C.K., Weng, H.C.: Natural convection in a vertical microchannel. J. Heat Transfer 127, 1053–1056 (2005)

    Article  Google Scholar 

  6. Jha, B.K., Aina, B., Joseph, S.B.: Natural convection flow in a vertical micro-channel with suction/injection. J. Process Mech. Eng. (2013). doi:10.1177/0954408913492719

  7. Chen, C.K., Weng, H.C.: Natural convection in a vertical microchannel with thermal creep in a vertical microchannel. J. Phys. D Appl. Phys. 39, 3107–3118 (2005)

    Article  Google Scholar 

  8. Weng, H.C., Chen, C.K.: Drag reduction and heat transfer enhancement over a heated wall of a vertical annular microchannel. Int. J. Heat Mass Transfer 52, 1075–1079 (2009)

    Article  MATH  Google Scholar 

  9. Jha, B.K., Aina, B., Shehu, A.M.: Combined effects of suction/Injection and wall surface curvature on natural convection flow in a vertical micro-porous-annulus. J. Thermophys. Aerodyn. [in press].

  10. Avci, M., Aydin, O.: Mixed convection in a vertical parallel plate microchannel. ASME J. Heat Transfer 129, 162–166 (2007)

    Article  Google Scholar 

  11. Avci, M., Aydin, O.: Mixed convection in a vertical parallel plate microchannel with asymmetric wall heat fluxes. ASME J. Heat Transfer 129, 1091–1095 (2007)

    Article  Google Scholar 

  12. Avci, M., Aydin, O.: Mixed convection in a vertical microannulus between two concemtric microtubes. ASME J. Heat Transfer 131, 014502–014504 (2009)

    Article  Google Scholar 

  13. Hajmohammadi, M.R., Nourazer, S.S.: on the insertion of a thin gas layer in micro cylindrical Couette flows involving power-law liquids. Int. J. Heat Mass Transfer 75, 97–108 (2014)

    Article  Google Scholar 

  14. Hajmohammadi, M.R., Nourazer, S.S., Campo, A.: Analytical solution for two-phase flow between two rotating cylinders filled with power law liquid and a micro layer of gas. J. Mech. Sci. Technol. 28(5), 1–7 (2014). doi:10.1007/s12206-013-0913-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babatunde Aina.

Appendix

Appendix

The constants used in the work are as follows:

$$\begin{aligned}&b_1 =( {{r^*} })^{S\Pr }-2\beta _T Kn( {1-{r^*} })S\Pr ( {{r^*} })^{(S\Pr -1)}, \quad b2=1+2\beta _T Kn( {1-{r^*} })S\Pr ,\\&b3=-\frac{1}{(b2-b1)}, \\&b_4 =\frac{b_1 }{( {b_2 -b_1 })} \quad b_5 =\frac{1}{2}-\frac{{r^*} ^2}{2}, \quad b_6 =\frac{1}{( {S\Pr +2})}-\frac{( {{r^*} })^{( {S\Pr +2})}}{( {S\Pr +2})}, \quad C_7 =\frac{C_0 }{( {4-2S})}, \\&C_8 =\frac{C_1 }{( {S \Pr +2})^2-S( {S \Pr +2})}, \quad F_1 =-\frac{1}{A}\frac{Gr}{\hbox {Re}}C_7 , \quad F_2 =-\frac{1}{A}\frac{Gr}{\hbox {Re}}C_8 , \quad F_3 =\frac{C_7 }{A},\\&F_4 =\frac{1}{2}-\frac{{r^*} ^2}{2}, \\&F_5 =\frac{1}{( {S+2})}-\frac{( {{r^*} })^{( {S+2})}}{( {S+2})}, \quad F_6 =\frac{F_1 }{4}-\frac{F_1 {r^*} ^4}{4}+\frac{F_2 }{( {S\Pr +4})}-\frac{F_2 ( {{r^*} })^{( {S\Pr +4})}}{( {S\Pr +4})} \\&F_7 =\frac{F_3 }{4}( {1-{r^*} ^4}), \quad F_8 =\frac{1}{2}( {1-{r^*} ^2}), \quad F_9 =F_1 +\frac{F_3 F_8 }{F_7 }-\frac{F_3 F_6 }{F_7 }, \quad F_{10} =F_9 +F_2 , \\&F_{11} =-\frac{F_3 F_4 }{F_7 }, \\&F_{12} =-\frac{F_3 F_5 }{F_7 }, \quad F_{13} ={r^*} ^S, \quad F_{14} =F_9 {r^*} ^2+F_2 {r^*} ^{(S\Pr +2)}, \quad F_{15} =-\frac{F_3 F_4 {r^*} ^2}{F_7 }, \\&\quad F_{16} =-\frac{F_3 F_5 {r^*} ^2}{F_7 }, \\&F_{17} =2F_9 +F_2 ( {S\Pr +2}), \quad F_{18} =-\frac{2F_3 F_4 }{F_7 }, \quad .F_{19} =-\frac{2F_3 F_5 }{F_7 }, \quad F_{20} =S{r^*} ^{( {S-1})}, \\&F_{21} =2F_9 {r^*} +F_2 ( {S\Pr +2}){r^*} ^{( {S\Pr +1})}, \quad F_{22} =-\frac{2F_3 F_4 {r^*} }{F_7 }, \quad F_{23} =-\frac{2F_3 F_5 {r^*} }{F_7 }, \\&F_{24} =F_{14} -2\beta _v Kn( {1-{r^*} })F_{21} , \quad F_{25} =1+F_{15} -2\beta _v Kn( {1-{r^*} })F_{22} \\&F_{26} =F_{13} +F_{16} -2\beta _v Kn( {1-{r^*} })F_{20} -2\beta _v Kn( {1-{r^*} })F_{23}, \\&F_{27} =F_{10} +2\beta _v Kn(1-r^*) F_{17,} \\&F_{28} =1+F_{11} +2\beta _v Kn( {1-{r^*} })F_{18},\\&F_{29} =1+F_{12} +2\beta _v Kn( {1-{r^*} })S+2\beta _v Kn( {1-{r^*} }) F_{19}, \\&F_{30} =F_{29} -\frac{F_{26} F_{28} }{F_{25}}, \quad {F_{31}}=\frac{F_{24}F_{28}}{F_{25}}-F_{27}, \quad F_{32} =C_0 C_2 ,F_{33} =C_0 C_3 , \\&F_{34} =C_0 F_9 -\frac{F_3 F_4 C_0 C_2 }{F_7 }-\frac{F_3 F_5 C_0 C_3 }{F_7 },\\&F_{35} =C_0 F_2 +C_1 F_9 -\frac{F_3 F_4 C_1 C_2 }{F_7 }-\frac{F_3 F_5 C_1 C_3 }{F_7 }, \\&{F_{36}}=C_1 C_2 , \; {F_{37}}=C_1 C_3 , \; {F_{38}}=C_1 {F_{2}}, \quad F_{39} =\frac{2}{( {1-/{r^*}^2})}, \quad F_{40} =\frac{F_{32} }{2}-\frac{F_{32} {r^*}^2}{2}, \\&F_{41} =\frac{F_{33} }{( {S\!+\!2})}-\frac{F_{33} {r^*}^{( {S+2})}}{( {S\!+\!2})}, \; F_{42} =\frac{F_{34} }{4}-\frac{F_{34} {r^*} ^4}{4}, \; F_{43} =\frac{F_{35} }{( {S\Pr \!+4})}-\frac{F_{35} {r^*} ^{( {S \Pr +4})}}{({S \Pr \!+4})}, \\&F_{44} =\frac{F_{36} }{( {S \Pr +2})}-\frac{F_{36} {r^*} ^{( {S \Pr +2})}}{( {S\Pr +2})}, \quad F_{45} =\frac{F_{37} }{( {S \Pr +S+2})}-\frac{F_{37} {r^*} ^{( {S \Pr +S+2})}}{( {S\Pr +S+2})},\\&F_{46} =\frac{F_{38} }{( {2S \Pr +4})}-\frac{F_{38} {r^*} ^{( {2S\Pr +4})}}{( {2S \Pr +4})}, \\&F_{47} =F_{40} +F_{41} +F_{42} +F_{43} +F_{44} +F_{45} +F_{46} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, B.K., Aina, B. Mathematical modelling and exact solution of steady fully developed mixed convection flow in a vertical micro-porous-annulus. Afr. Mat. 26, 1199–1213 (2015). https://doi.org/10.1007/s13370-014-0277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-014-0277-4

Keywords

Mathematics Subject Classification

Navigation