Skip to main content

Some connections between various subclasses of planar harmonic mappings involving generalized Bessel functions

Abstract

The purpose of the present paper is to establish connections between various subclasses of harmonic univalent functions by applying certain convolution operator involving generalized Bessel functions of first kind. To be more precise, we investigate such connections with harmonic \(k\)-uniformly convex and harmonic \(k\)-uniformly starlike mappings in the plane.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ahuja, O.P.: Planar harmonic univalent and related mappings. J. Inequal. Pure Appl. Math. 6(4), 1–18 (2005) (art 122)

  2. 2.

    Ahuja, O.P.: Planar harmonic convolution operators generated by hypergeometric functions. Integral Transforms Spec. Funct. 18(3), 165–177 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    Ahuja, O.P.: Connections between various subclasses of planar harmonic mappings involving hypergeometric functions. Appl. Math. Comput. 198(1), 305–316 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. 4.

    Ahuja, O.P., Jahangiri, J.M.: Noshiro-type harmonic univalent functions. Sci. Math. Jpn. 6(2), 253–259 (2002)

    MathSciNet  Google Scholar 

  5. 5.

    Ahuja, O.P., Jahangiri, J.M.: A subclass of harmonic univalent functions. J. Nat. Geom. 20(1–2), 45–56 (2001)

    MATH  MathSciNet  Google Scholar 

  6. 6.

    Ahuja, O.P., Aghalary, R., Joshi, S.B.: Harmonic univalent functions associated with \(k\)-uniformly starlike functions. Math. Sci. Res. J. 9(1), 9–17 (2005)

    MATH  MathSciNet  Google Scholar 

  7. 7.

    Baricz, A.: Geometric properties of generalized Bessel functions. Publ. Math. Debr. 73(1–2), 155–178 (2008)

    MATH  MathSciNet  Google Scholar 

  8. 8.

    Baricz, A.: Geometric properties of generalized Bessel functions of complex order. Mathematica 48(71)(1), 13–18 (2006)

  9. 9.

    Baricz, A.: Generalized Bessel functions of the first kind. PhD Thesis, Babes-Bolyai University, Cluj-Napoca (2008)

  10. 10.

    Baricz, A.: Generalized Bessel functions of the first kind. In: Lecture Notes in Mathematics, Vol. 1994. Springer-Verlag, New York (2010)

  11. 11.

    Carleson, B.C., Shaffer, D.B.: Starlike and prestarlike hypergeometric functions. SIAM J. Math. Anal. 15, 737–745 (1984)

    Article  MathSciNet  Google Scholar 

  12. 12.

    Clunie, J., Sheil-Small, T.: Harmonic univalent functions. Ann. Acad. Sci. Fen. Ser. A.I. Math. 9, 3–25 (1984)

  13. 13.

    Duren, P.: Cambridge Tracts in Mathematics. Harmonic mappings in the plane, vol. 156. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  14. 14.

    Goodman, A.W.: On uniformly convex functions. Ann. Pol. Math. 56, 87–92 (1991)

    MATH  Google Scholar 

  15. 15.

    Kim, Y.C., Jahangiri, J.M., Choi, J.H.: Certain convex harmonic functions. Int. J. Math. Math. Sci. 29(8), 459–465 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. 16.

    Mondal, S.R., Swaminathan, A.: Geometric properties of generalized Bessel functions. Bull. Malays. Math. Sci. Soc. (2) 35(1), 179–194 (2012)

  17. 17.

    Owa, S., Srivastava, H.M.: Univalent and starlike generalized hypergeometric functions. Can. J. Math. 39, 1057–1077 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. 18.

    Ponnusamy, S., Rønning, F.: Starlikeness properties for convolution involving hypergeometric series. Ann. Univ. Mariae Curie-Sklodowska L.H. 116, 141–155 (1998)

  19. 19.

    Porwal, S.: Mapping properties of generalized Bessel functions on some subclasses of univalent functions. Anal. Univ. Oradea Fasc. Mat. XX(2), 51–60 (2013)

  20. 20.

    Porwal, S.: Harmonic starlikeness and convexity of integral operators generated by generalized Bessel functions. Acta Math. Vietnam (accepted)

  21. 21.

    Porwal, S., Dixit, K.K.: An application of generalized Bessel functions on certain analytic functions. Acta Univ. Matthiae Belii Ser. Math. 2013, 51–57 (2013)

  22. 22.

    Porwal, S., Dixit, K.K.: An application of hypergeometric functions on harmonic univalent functions. Bull. Math. Anal. Appl. 2(4), 97–105 (2010)

    MathSciNet  Google Scholar 

  23. 23.

    Rønning, F.: Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 118(1), 189–196 (1993)

  24. 24.

    Rosy, T., Stephen, B.A., Subramanian, K.G., Jahangiri, J.M.: Goodman–Rønning-type harmonic univalent functions. Kyungpook Math. J. 41(1), 45–54 (2001)

    MATH  MathSciNet  Google Scholar 

  25. 25.

    Ruscheweyh, S., Singh, V.: On the order of starlikeness of hypergeometric functions. J. Math. Anal. Appl. 113, 1–11 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  26. 26.

    Silverman, H.: Harmonic univalent function with negative coefficients. J. Math. Anal. Appl. 220, 283–289 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saurabh Porwal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Porwal, S. Some connections between various subclasses of planar harmonic mappings involving generalized Bessel functions. Afr. Mat. 26, 997–1008 (2015). https://doi.org/10.1007/s13370-014-0260-0

Download citation

Keywords

  • Harmonic
  • Univalent functions
  • Harmonic starlike
  • Harmonic convex
  • Harmonic \(k\)-uniformly convex functions
  • Harmonic \(k\)-uniformly starlike functions
  • Generalized Bessel functions

Mathematics Subject Classification (2010)

  • 30C45
  • 33C05