Skip to main content
Log in

Exact solutions for equations of flow and heat transfer in fluid saturated porous media

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

In this paper we investigate the complete behavior of the viscous and incompressible fluid flow in an anisotropic saturated porous horizontal cavity. Taking into account the rigid/rigid and stress-free/stress-free horizontal boundaries, we obtain the exact solutions for flow and heat transfer equations, i.e. the velocity and temperature, depending on the Darcy–Rayleigh number, the Darcy number, the anisotropic permeability ratio and the inclination of the principal axis. These obtained variables allow us to compute the different expressions of the pressure gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(a, b, c\) :

Constants

\(C\) :

Dimensionless temperature gradient in \(x\) direction

\(Da\) :

Darcy number, \(K_1/{L'}^{2}\)

\(\overrightarrow{g}\) :

Gravitational acceleration

\(H'\) :

Depth of cavity

\(k\) :

Thermal conductivity

\(\overline{K}\) :

Flow permeability tensor

\(K_1, K_2\) :

Flow permeability along the principal axes

\(K^{\star }\) :

Anisotropic permeability ratio, \(K_1/K_2\)

\(L'\) :

Width of cavity

\(q'\) :

Uniform heat flux

\(Ra\) :

Darcy–Rayleigh number, \(g\beta K_1{L'}^2q'/k\nu \alpha \)

\(Ra^{\star }\) :

Rayleigh number for a fluid, \(Ra/Da\)

\(t\) :

Dimensionless time

\(\widetilde{T}\) :

Dimensionless temperature

\(T\) :

Dimensionless quasi-state temperature, \(\widetilde{T}-\xi t\)

\(\Delta T'\) :

Temperature scale, \(q'L'/k\)

\(\Delta T\) :

Wall to wall dimensionless temperature difference at \(x=0\)

\(\overrightarrow{V}\) :

Seepage velocity

\(u, v\) :

Dimensionless velocity components in \(x, y\) directions

\(x\) :

Dimensionless horizontal coordinate

\(y\) :

Dimensionless vertical coordinate Greek symbols

\(\alpha \) :

Thermal diffusivity

\(\beta \) :

Thermal expansion coefficient of the fluid

\(\gamma \) :

Inclination of the principal axis

\(\mu \) :

Dynamic viscosity of the fluid

\(\nu \) :

Kinematic viscosity of the fluid

\(\phi \) :

\(y\)-Dependent temperature term

\(\psi \) :

Dimensionless stream function, \(\psi '/\alpha \)

\(\rho \) :

Density of the fluid

\((\rho c)_f\) :

Heat capacity of the fluid

\((\rho c)_p\) :

Heat capacity of saturated porous medium

\(\tau \) :

Dimensionless Darcy parameter, \({Da}^{-\frac{1}{2}}\)

\(\sigma \) :

Heat capacity ratio, \((\rho c)_p/(\rho c)_f\)

\(\xi \) :

Dimensionless uniform heat sink Superscript

\('\) :

Dimensional quantities Subscript

\(o\) :

Refers to origin

References

  1. Bear, J.: Dynamics of Fluids in Porous Media. Dover Publication, Elsevier, New York (1972)

  2. Bejan, A.: Convection Heat Transfer. Wiley, New York (1984)

  3. Eglit, M.E.: Problems in Mechanical Theory of Continua. Moscow Lycee, Moscow(1996)

  4. Weber, J.E.: Convection in a porous medium with horizontal and vertical temperature gradients. Int. J. Heat Mass Transfer 17, 241–248 (1974)

    Article  MATH  Google Scholar 

  5. Nield, D.A.: Convection in a porous medium with inclined temperature gradients. Int. J. Heat Mass Transfer 34, 87–92 (1991)

    Article  MATH  Google Scholar 

  6. Walker, K.L., Homsy, G.M.: A note of convective instability in Boussinesq fluids and porous media. J. Heat transfer 99, 338–339 (1977)

    Article  Google Scholar 

  7. Vasseur, P., Robillard, L.: The Brinkman model in a porous layer: effects of nonuniform thermal gradient. Int. J. Heat Mass Transfer 36, 4199–4206 (1993)

    Article  MATH  Google Scholar 

  8. Mckibbin, R.: Thermal convection in a porous layer: effects of anisotropy and surface boundary conditions. Trans. Porous Media 1, 271–292 (1984)

    Article  Google Scholar 

  9. Degan, G., Vasseur, P.: Influence of anisotropy on convection in porous media with nonuniform thermal gradient. Int. J. Heat Mass Transfer 46, 781–789 (2003)

    Article  MATH  Google Scholar 

  10. Lu, L., Doering, C.R., Busse, F.H.: Bounds on convection driven by internal heating. J. Math. Phys. 45(7), 2968–2985 (2004)

    Article  MathSciNet  Google Scholar 

  11. Castinel, G., Combarnous, M.: Critère d’apparition de la convection naturelle dans une couche poreuse anisotrope. J.C.R. Hebd. Seanc. Acad. Sci. Paris B278, 701–704 (1974)

  12. Degan, G., Vasseur, P.: Boundary layer regime in a vertical porous layer with anisotropic permeability and boundary effects. Int. J. Heat Fluid Flow 18, 334–343 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Adanhounme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adanhounme, V., Olodo, E.T. Exact solutions for equations of flow and heat transfer in fluid saturated porous media. Afr. Mat. 26, 913–921 (2015). https://doi.org/10.1007/s13370-014-0258-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-014-0258-7

Keywords

Navigation