Skip to main content

On some Zeweir I-convergent sequence spaces defined by a modulus function

Abstract

In this article we introduce the sequence spaces \(\mathcal Z ^{I}(f)\), \(\mathcal Z ^{I}_{0}(f)\) and \(\mathcal Z ^{I}_{\infty }(f)\) for a modulus function \(f\) and study some of the topological and algebraic properties on these spaces.

This is a preview of subscription content, access via your institution.

References

  1. Başar, F., Altay, B.: On the spaces of sequences of p-bounded variation and related matrix mappings. krainion Math. J. 55, 136–147 (2003)

    Google Scholar 

  2. Buck, R.C.: Generalized asymptotic density. Am. J. Math. 75, 335–346 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  3. Connor, J.S.: The statistical and strong P-Cesaro convergence of sequences. Analysis 8, 47–63 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Connor, J.S.: On strong matrix summability with respect to a modulus and statistical convergence. Cnad. Math. Bull. 32, 194–198 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Connor, J., Kline, J.: On statistical limit points and the consistency of statistical convergence. J. Math. Anal. Appl. 197, 392–399 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Connor, J., Fridy, J.A., Kline, J.: Statistically pre-Cauchy sequence. Analysis 14, 311–317 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Demirci, K.: I-limit superior and limit inferior. Math. Commun. 6, 165–172 (2001)

    MATH  MathSciNet  Google Scholar 

  8. Dems, K.: On I-Cauchy sequences. Real Anal. Exch. 30, 123–128 (2005)

    MATH  MathSciNet  Google Scholar 

  9. Fast, H.: Surla convergence statistique. Colloq. Math. 2, 241–244 (1951)

    MATH  MathSciNet  Google Scholar 

  10. Fridy, J.A.: On statistical convergence. Analysis 5, 301–313 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fridy, J.A.: Statistical limit points. Proc. Am. Math. Soc. 11, 1187–1192 (1993)

    Article  MathSciNet  Google Scholar 

  12. Garling, D.J.H.: On symmetric sequence spaces. Proc. Lond. Math. Soc. 16, 85–106 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  13. Garling, D.J.H.: Symmetric bases of locally convex spaces. Studia Math. Soc. 30, 163–181 (1968)

    MATH  MathSciNet  Google Scholar 

  14. Gramsch, B.: Die Klasse metrisher linearer Raume L(\(\phi \)). Math. Ann. 171, 61–78 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gurdal, M.: Some types of convergence. Doctoral dissertation, S.Demirel University, Isparta (2004)

  16. Kamthan, P.K., Gupta, M.: Sequence Spaces and Series. Marcel Dekker Inc., New York (1980)

  17. Khan, V.A., Ebadullah, K.: On some I-convergent sequence spaces defined by a modulus function. Theory Appl. Math. Comput. Sci. 1(2), 22–30 (2011)

    MATH  MathSciNet  Google Scholar 

  18. Khan, V.A., Ebadullah, K., Ahmad, A.: I-pre-Cauchy sequences and Orlicz function. J. Math. Anal. 3(1), 21–26 (2012)

    MathSciNet  Google Scholar 

  19. Khan, V.A., Ebadullah, K.: I-convergent difference sequence spaces defined by a sequence of moduli. J. Math. Comput. Sci. 2(2), 265–273 (2012)

    MathSciNet  Google Scholar 

  20. Khan, V.A., Ebadullah, K.: On Zweier I-convergent sequence spaces. Submitted (2013)

  21. Kostyrko, P., Šalát, T., Wilczyński, W.: I-convergence. Real Anal. Exch. 26(2), 669–686 (2000)

    Google Scholar 

  22. Köthe, G.: Topological Vector spaces 1. Springer, Berlin (1970)

  23. Malkowsky, E.: Recent results in the theory of matrix transformation in sequence spaces. Math. Vesnik. 49, 187–196 (1997)

    MATH  MathSciNet  Google Scholar 

  24. Nakano, H.: Concave modulars. J. Math. Soc. Jpn. 5, 29–49 (1953)

    Article  MATH  Google Scholar 

  25. Ng, P., Lee, P,Y.: Cesaro sequence spaces of non-absolute type. Comment. Math. Practice Math. 20(2), 429–433 (1978)

    MATH  MathSciNet  Google Scholar 

  26. Ruckle, W.H.: On perfect symmetric BK-spaces. Math. Ann. 175, 121–126 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ruckle, W.H.: Symmetric coordinate spaces and symmetric bases. Canad. J. Math 19, 828–838 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ruckle, W.H.: FK-spaces in which the sequence of coordinate vectors is bounded. Canad. J. Math 25(5), 973–975 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  29. Šalát, T.: On statisticaly convergent sequences of real numbers. Math. Slovaca 30, 139–150 (1980)

    MATH  MathSciNet  Google Scholar 

  30. Šalát, T., Tripathy, B.C., Ziman, M.: On some properties of I-convergence. Tatra Mt. Math. Publ. 28, 279–286 (2004)

    MATH  MathSciNet  Google Scholar 

  31. Šalát, T., Tripathy, B.C., Ziman, M.: On I-convergence field. Ital. J. Pure Appl. Math. 17, 45–54 (2005)

    MATH  Google Scholar 

  32. Schoenberg, I.J.: The integrability of certain functions and related summability methods. Am. Math. Mon. 66, 361–375 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  33. Şengönül, M.: On the Zweier sequence space. Demonstratio Math. XL(1), 181–196 (2007)

  34. Tripathy, B.C., Hazarika, B.: Paranorm I-convergent sequence spaces. Math. Slovaca 59(4), 485–494 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tripathy, B.C., Hazarika, B.: Some I-convergent sequence spaces defined by Orlicz function. Acta Math. Appl. Sin. 27(1), 149–154 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tripathy, B.C., Hazarika, B.: I-convergent sequence spaces associated with multiplier sequence spaces. Math. Inequal. Appl. 11(3), 543–548 (2008)

    MATH  MathSciNet  Google Scholar 

  37. Tripathy, B.C., Hazarika, B.: I-monotonic and I-convergent sequences. Kyungpook Math. J. 51(2), 233–239 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Tripathy, B.C., Sen, M., Nath, S.: I-convergence in probabilistic n-normed space. Soft Comput. 16, 1021–1027 (2012). doi:10.1007/s00500-011-0799-8

    Google Scholar 

  39. Tripathy, B.C., Sharma, B.: On I-convergent double sequences of fuzzy real numbers. Kyungpook Math. J. 52(2), 189–200 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. Tripathy, B.C., Mahanta, S.: On I-acceleration convergence of sequences. J. Frankl. Inst. 347, 591–598 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Tripathy, B.C., Dutta, A.J.: On I-acceleration convergence of sequences of fuzzy real numbers. Math. Modell. Anal. 17(4), 549–557 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  42. Tripathy, B.C., Hazarika, B., Choudhary, B.: Lacunary I-convergent sequences. Kyungpook Math. J. 52(4), 473–482 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Tripathy, B.C., Chandra, P.: On some generalized difference paranormed sequence spaces associated with multiplier sequences defined by modulus function. Anal. Theory Appl. 27(1), 21–27 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wang, C.S.: On Nörlund sequence spaces. Tamkang J. Math. 9, 269–274 (1978)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vakeel A. Khan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khan, V.A., Ebadullah, K., Esi, A. et al. On some Zeweir I-convergent sequence spaces defined by a modulus function. Afr. Mat. 26, 115–125 (2015). https://doi.org/10.1007/s13370-013-0186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-013-0186-y

Keywords

Mathematics Subject Classification (2010):