Abstract
In this article we introduce the sequence spaces \(\mathcal Z ^{I}(f)\), \(\mathcal Z ^{I}_{0}(f)\) and \(\mathcal Z ^{I}_{\infty }(f)\) for a modulus function \(f\) and study some of the topological and algebraic properties on these spaces.
This is a preview of subscription content, access via your institution.
References
Başar, F., Altay, B.: On the spaces of sequences of p-bounded variation and related matrix mappings. krainion Math. J. 55, 136–147 (2003)
Buck, R.C.: Generalized asymptotic density. Am. J. Math. 75, 335–346 (1953)
Connor, J.S.: The statistical and strong P-Cesaro convergence of sequences. Analysis 8, 47–63 (1988)
Connor, J.S.: On strong matrix summability with respect to a modulus and statistical convergence. Cnad. Math. Bull. 32, 194–198 (1989)
Connor, J., Kline, J.: On statistical limit points and the consistency of statistical convergence. J. Math. Anal. Appl. 197, 392–399 (1996)
Connor, J., Fridy, J.A., Kline, J.: Statistically pre-Cauchy sequence. Analysis 14, 311–317 (1994)
Demirci, K.: I-limit superior and limit inferior. Math. Commun. 6, 165–172 (2001)
Dems, K.: On I-Cauchy sequences. Real Anal. Exch. 30, 123–128 (2005)
Fast, H.: Surla convergence statistique. Colloq. Math. 2, 241–244 (1951)
Fridy, J.A.: On statistical convergence. Analysis 5, 301–313 (1985)
Fridy, J.A.: Statistical limit points. Proc. Am. Math. Soc. 11, 1187–1192 (1993)
Garling, D.J.H.: On symmetric sequence spaces. Proc. Lond. Math. Soc. 16, 85–106 (1966)
Garling, D.J.H.: Symmetric bases of locally convex spaces. Studia Math. Soc. 30, 163–181 (1968)
Gramsch, B.: Die Klasse metrisher linearer Raume L(\(\phi \)). Math. Ann. 171, 61–78 (1967)
Gurdal, M.: Some types of convergence. Doctoral dissertation, S.Demirel University, Isparta (2004)
Kamthan, P.K., Gupta, M.: Sequence Spaces and Series. Marcel Dekker Inc., New York (1980)
Khan, V.A., Ebadullah, K.: On some I-convergent sequence spaces defined by a modulus function. Theory Appl. Math. Comput. Sci. 1(2), 22–30 (2011)
Khan, V.A., Ebadullah, K., Ahmad, A.: I-pre-Cauchy sequences and Orlicz function. J. Math. Anal. 3(1), 21–26 (2012)
Khan, V.A., Ebadullah, K.: I-convergent difference sequence spaces defined by a sequence of moduli. J. Math. Comput. Sci. 2(2), 265–273 (2012)
Khan, V.A., Ebadullah, K.: On Zweier I-convergent sequence spaces. Submitted (2013)
Kostyrko, P., Šalát, T., Wilczyński, W.: I-convergence. Real Anal. Exch. 26(2), 669–686 (2000)
Köthe, G.: Topological Vector spaces 1. Springer, Berlin (1970)
Malkowsky, E.: Recent results in the theory of matrix transformation in sequence spaces. Math. Vesnik. 49, 187–196 (1997)
Nakano, H.: Concave modulars. J. Math. Soc. Jpn. 5, 29–49 (1953)
Ng, P., Lee, P,Y.: Cesaro sequence spaces of non-absolute type. Comment. Math. Practice Math. 20(2), 429–433 (1978)
Ruckle, W.H.: On perfect symmetric BK-spaces. Math. Ann. 175, 121–126 (1968)
Ruckle, W.H.: Symmetric coordinate spaces and symmetric bases. Canad. J. Math 19, 828–838 (1967)
Ruckle, W.H.: FK-spaces in which the sequence of coordinate vectors is bounded. Canad. J. Math 25(5), 973–975 (1973)
Šalát, T.: On statisticaly convergent sequences of real numbers. Math. Slovaca 30, 139–150 (1980)
Šalát, T., Tripathy, B.C., Ziman, M.: On some properties of I-convergence. Tatra Mt. Math. Publ. 28, 279–286 (2004)
Šalát, T., Tripathy, B.C., Ziman, M.: On I-convergence field. Ital. J. Pure Appl. Math. 17, 45–54 (2005)
Schoenberg, I.J.: The integrability of certain functions and related summability methods. Am. Math. Mon. 66, 361–375 (1959)
Şengönül, M.: On the Zweier sequence space. Demonstratio Math. XL(1), 181–196 (2007)
Tripathy, B.C., Hazarika, B.: Paranorm I-convergent sequence spaces. Math. Slovaca 59(4), 485–494 (2009)
Tripathy, B.C., Hazarika, B.: Some I-convergent sequence spaces defined by Orlicz function. Acta Math. Appl. Sin. 27(1), 149–154 (2011)
Tripathy, B.C., Hazarika, B.: I-convergent sequence spaces associated with multiplier sequence spaces. Math. Inequal. Appl. 11(3), 543–548 (2008)
Tripathy, B.C., Hazarika, B.: I-monotonic and I-convergent sequences. Kyungpook Math. J. 51(2), 233–239 (2011)
Tripathy, B.C., Sen, M., Nath, S.: I-convergence in probabilistic n-normed space. Soft Comput. 16, 1021–1027 (2012). doi:10.1007/s00500-011-0799-8
Tripathy, B.C., Sharma, B.: On I-convergent double sequences of fuzzy real numbers. Kyungpook Math. J. 52(2), 189–200 (2012)
Tripathy, B.C., Mahanta, S.: On I-acceleration convergence of sequences. J. Frankl. Inst. 347, 591–598 (2010)
Tripathy, B.C., Dutta, A.J.: On I-acceleration convergence of sequences of fuzzy real numbers. Math. Modell. Anal. 17(4), 549–557 (2012)
Tripathy, B.C., Hazarika, B., Choudhary, B.: Lacunary I-convergent sequences. Kyungpook Math. J. 52(4), 473–482 (2012)
Tripathy, B.C., Chandra, P.: On some generalized difference paranormed sequence spaces associated with multiplier sequences defined by modulus function. Anal. Theory Appl. 27(1), 21–27 (2011)
Wang, C.S.: On Nörlund sequence spaces. Tamkang J. Math. 9, 269–274 (1978)
Acknowledgments
The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Khan, V.A., Ebadullah, K., Esi, A. et al. On some Zeweir I-convergent sequence spaces defined by a modulus function. Afr. Mat. 26, 115–125 (2015). https://doi.org/10.1007/s13370-013-0186-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13370-013-0186-y
Keywords
- Ideal
- Filter
- Modulus function
- Lipschitz function
- I-convergence field
- I-convergent
- Monotone and solid spaces