Skip to main content
Log in

Diabetic Retinopathy Detection Using Deep Learning Multistage Training Method

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Diabetic retinopathy (DR) stands as the most prevalent diabetic eye ailment and constitutes one of the primary causes of blindness worldwide. Detecting and classifying retinal images can be laborious and demands specialized expertise. In this study, a convolutional neural network (CNN) was trained using stained retinal fundus images to identify DR and categorize its stages. The deep learning models chosen for this research encompassed InceptionResnetV2, VGG16, VGG19, DenseNet121, MobileNetV2, and EfficientNet2L. To enhance the resilience of the models and mitigate overfitting issues, data augmentation approaches were implemented. Each network underwent two levels of training. The initial level involved a feature extraction network with a customized classifier head, followed by fine-tuning the resulting network from the previous step through the unfreezing of certain layers. The efficacy of the proposed strategy was assessed through qualitative and quantitative evaluations using Kaggle’s diabetic retinopathy detection dataset. The obtained results demonstrated that our proposed methods, particularly those based on the refined InceptionResnetV2, achieved exceptional accuracy values, reaching 96.61%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Jonas, J.B.; Bourne, R.R.A.; White, R.A.; Flaxman, S.R.; Keeffe, J.; Leasher, J., et al.: Visual impairment and blindness due to macular diseases globally: a systematic review and meta-analysis. Amer. J. Ophthalmol. 158(4), 808–815 (2014)

    Article  Google Scholar 

  2. Leasher, J.L.; Bourne, R.R.A.; Flaxman, S.R.; Jonas, J.B.; Keeffe, J.; Naidoo, K., et al.: Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care 39, 1643–1649 (2016)

    Article  Google Scholar 

  3. Soomro, T.A.; Afifi, A.J.; Zheng, L.; Soomro, S.; Gao, J.; Hellwich, O.; Paul, M.: Deep learning models for retinal blood vessels segmentation: a review. IEEE Access 7, 71696–71717 (2019)

    Article  Google Scholar 

  4. Sun, Y.; Zhang, D.: Diagnosis and analysis of diabetic retinopathy based on electronic health records. IEEE Access 7, 86115–86120 (2019)

    Article  Google Scholar 

  5. Poostchi, M.; Silamut, K.; Maude, R.J.; Jaeger, S.; Thoma, G.: Image analysis and machine learning for detecting malaria. Transl. Res. 194, 36–55 (2018)

    Article  Google Scholar 

  6. Bressler, N.M.: Age-related macular degeneration is the leading cause of blindness. JAMA 291(15), 1900–1901 (2004)

    Article  Google Scholar 

  7. Ye, H.; Zhang, Q.; Liu, X.; Cai, X.; Yu, W.; Yu, S., et al.: Prevalence of age-related macular degeneration in an elderly urban Chinese population in China: the Jiangning eye study. Invest. Ophthalmol. Vis. Sci.Ophthalmol. Vis. Sci. 55(10), 6374–6380 (2014)

    Article  Google Scholar 

  8. Kumar, G.; Bhatia, P. K. (2014). A detailed review of feature extraction in image processing systems. In: 2014 Fourth International Conference on Advanced Computing and Communication Technologies (pp. 5-12). IEEE.

  9. Yadav, S.S.; Jadhav, S.M.: Deep convolutional neural network based medical image classification for disease diagnosis. J. Big Data 6(1), 1–18 (2019)

    Article  Google Scholar 

  10. Dias, J.M.P.; Oliveira, C.M.; da Silva Cruz, L.A.: Retinal image quality assessment using generic image quality indicators. Inf. Fusion 19, 73–90 (2014)

    Article  Google Scholar 

  11. Cui, H.; Shen, S.; Gao, W.; Liu, H.; Wang, Z.: Efficient and robust large-scale structure-from-motion via track selection and camera prioritization. ISPRS J. Photogramm. Remote Sens.Photogramm. Remote Sens. 156, 202–214 (2019)

    Article  Google Scholar 

  12. Molodij, G.; Ribak, E.N.; Glanc, M.; Chenegros, G.: Enhancing retinal images by extracting structural information. Opt. Commun.Commun. 313, 321–328 (2014)

    Article  Google Scholar 

  13. Peli, E.; Peli, T.: Restoration of retinal images obtained through cataracts. IEEE Trans. Med. Imag. 8(4), 401–406 (1989)

    Article  Google Scholar 

  14. Liu, H.; Tang, X.; Shen, S.: Depth-map completion for large indoor scene reconstruction. Pattern Recogn.Recogn. 99, 107112 (2020)

    Article  Google Scholar 

  15. Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)

    Article  Google Scholar 

  16. Gargeya, R.; Leng, T.: Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7), 962–969 (2017)

    Article  Google Scholar 

  17. Gour, N.; Khanna, P.: Multi-class multi-label ophthalmological disease detection using transfer learning based convolutional neural network. Biomed. Signal Process. Control 66, 102329 (2021)

    Article  Google Scholar 

  18. Pratt, H.; Coenen, F.; Broadbent, D.M.; Harding, S.P.; Zheng, Y.: Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 200–205 (2016)

    Article  Google Scholar 

  19. Menaouer, B.; Dermane, Z.; El HoudaKebir, N.; Matta, N.: Diabetic retinopathy classification using hybrid deep learning approach. SN Comput. Sci. 3(5), 357 (2022). https://doi.org/10.1007/s42979-022-01240-8

    Article  Google Scholar 

  20. X. Li; T. Pang; B. Xiong; W. Liu; P. Liang; and T. Wang. (2017). Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. In 2017 10th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI) (pp. 1-11). IEEE.

  21. Song, W.; Cao, Y.; Qiao, Z.; Wang, Q.; Yang, J. J An improved semi-supervised learning method on cataract fundus image classification. In: 2019 IEEE 43rd annual computer software and applications conference (COMPSAC) (Vol. 2, pp. 362-367). IEEE (2019).

  22. Alwakid, G.; Gouda, W.; Humayun, M.; Jhanjhi, N.Z.: Deep learning-enhanced diabetic retinopathy image classification. Digital Health 9, 20552076231194944 (2023). https://doi.org/10.1177/20552076231194942

    Article  Google Scholar 

  23. Kasim, Ö.: Ensemble classification based optimized transfer learning feature method for early stage diagnosis of diabetic retinopathy. J. Ambient Intell. Human Comput. 14, 11337–11348 (2023). https://doi.org/10.1007/s12652-023-04648-z

    Article  Google Scholar 

  24. Cao, J.; Chen, J.; Zhang, X., et al.: Diabetic retinopathy classification based on dense connectivity and asymmetric convolutional neural network. Neural Comput. Applic.Comput. Applic. (2022). https://doi.org/10.1007/s00521-022-07952-5

    Article  Google Scholar 

  25. Vij, R.; Arora, S.: A novel deep transfer learning based computerized diagnostic systems for multi-class imbalanced diabetic retinopathy severity classification. Multimed Tools Appl 82, 34847–34884 (2023). https://doi.org/10.1007/s11042-023-14963-4

    Article  Google Scholar 

  26. Asiri, N.; Hussain, M.; Al Adel, F.; Alzaidi, N.: Deep learning based computer-aided diagnosis systems for diabetic retinopathy: a survey. Artif. Intell. Med.. Intell. Med. 99, 101701 (2019)

    Article  Google Scholar 

  27. Ananda, A.; Ngan, K.H.; Karabağ, C.; Ter-Sarkisov, A.; Alonso, E.; Reyes-Aldasoro, C.C.: Classification and visualisation of normal and abnormal radiographs; a comparison between eleven convolutional neural network architectures. Sensors 21(16), 5381 (2021)

    Article  Google Scholar 

  28. H. Qassim; D. Feinzimer; A. Verma. Residual squeeze vgg16. arXiv 2017, arXiv:1705.03004.

  29. Han, B.; Du, J.; Jia, Y.; Zhu, H.: Zero-watermarking algorithm for medical image based on VGG19 deep convolution neural network. J. Healthcare Eng. 2021, 5551520–5551520 (2021)

    Article  Google Scholar 

  30. Chandrasekaran, G.; Antoanela, N.; Andrei, G.; Monica, C.; Hemanth, J.: Visual sentiment analysis using deep learning models with social media data. Appl. Sci. 12(3), 1030 (2022)

    Article  Google Scholar 

  31. M. Sandler; A. Howard; M. Zhu; A. Zhmoginov; L. C. Chen (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510-4520).

  32. M. Tan; Q. V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946

  33. Diabetic Retinopathy 224x224 (2019 Data) | Kaggle : https://www.kaggle.com/datasets/sovitrath/diabetic-retinopathy-224x224-2019-data

  34. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev.. Intell. Rev. 53, 5455–5516 (2020)

    Article  Google Scholar 

  35. G. Huang; Z. Liu; L. Van Der Maaten; K. Q. Weinberger. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 4700–4708, 2017.

  36. M. Abadi; P. Barham; J. Chen; Z. Chen; A. Davis; J. Dean; M. Devin; S. Ghemawat; G. Irving; M. Isard; et al. TensorFlow: A system for large-scale machine learning. arXiv 2016, arXiv:1605.08695.

  37. Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 21 March 2021).

  38. G. Van Rossum; F.L. Drake Jr. Python Tutorial; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995.

  39. Nahiduzzaman, M.; Islam, M.R.; Goni, M.O.F.; Anower, M.S.; Ahsan, M.; Haider, J.; Kowalski, M.: Diabetic retinopathy identification using parallel convolutional neural network based feature extractor and ELM classifier. Exp. Syst. Appl. 217, 119557 (2023). https://doi.org/10.1016/j.eswa.2023.119557

    Article  Google Scholar 

  40. AK. Gangwar; V. Ravi. Diabetic Retinopathy Detection using transfer learning and Deep Learning. In: Bhateja V, Peng SL, Satapathy SC, Zhang YD (eds) Evolution in Computational Intelligence. Advances in Intelligent systems and Computing, 1176. Springer, Singapore, (2021). https://doi.org/10.1007/978-981-15-5788-0_64

  41. Mohanty, C.; Mahapatra, S.; Acharya, B.; Kokkoras, F.; Gerogiannis, V.C.; Karamitsos, I.; Kanavos, A.: Using Deep Learning architectures for detection and classification of Diabetic Retinopathy. Sens (Basel) 23(12), 5726 (2023). https://doi.org/10.3390/s23125726

    Article  Google Scholar 

  42. Bodapati, J.D.; Shaik, N.S.; Naralasetti, V.: Deep convolution feature aggregation: an application to diabetic retinopathy severity level prediction. Signal Image Video Process. 15, 923–930 (2021)

    Article  Google Scholar 

  43. G. Kurup; JAA. Jothi; A. Kanadath. Diabetic retinopathy detection and classification using pretrained inception-v3. In: Proceedings of the IEEE International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON); Pune, India. 29–30 October ; pp. 1–6, 2021. https://doi.org/10.1109/SMARTGENCON51891.2021.9645914

  44. Maqsood, Z.; Gupta, M. K. (2022). Automatic detection of diabetic retinopathy on the edge. In: Cyber Security, Privacy and Networking: Proceedings of ICSPN 2021 (pp. 129-139). Singapore: Springer Nature Singapore.

  45. NM. Thomas; S. Albert Jerome (2021). Grading and classification of retinal images for detecting diabetic retinopathy using convolutional neural network. In International Conference on Advances in Electrical and Computer Technologies (pp. 607-614). Singapore: Springer Nature Singapore.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarra Guefrachi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guefrachi, S., Echtioui, A. & Hamam, H. Diabetic Retinopathy Detection Using Deep Learning Multistage Training Method. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09137-9

Keywords

Navigation