Skip to main content
Log in

Preparation of Biochar Composite Graphene Oxide for the Removal of Boron in Simulated Fracturing Flowback Fluid

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The treatment of boron in fracturing backflow fluid is a widely studied issue in oil and gas resource extraction. In this work, the material of canola straw-derived biochar composite graphene oxide (BC@GO) was produced and used for boron removal. Then, a series of characterization and batch adsorption experiments were conducted on the material. The results show that the composite material has good adsorption capacity, and the maximum adsorption capacity is 168mg/g at the initial concentration of 300 mg/L at pH = 7. The results of kinetic and thermodynamic fitting showed that the boron adsorption by BC@GO conforms to the pseudo-second-order kinetics model and Freundlich model. In addition, it was found that the material still has a good adsorption capacity in batch adsorption experiments of hydraulic fracturing simulated water. Therefore, BC@GO is a new boron removal material with good application prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Thomas, L.; Tang, H.; Kalyon, D.M.; Aktas, S.; Arthur, J.D.; Blotevogel, J.; Carey, J.W.; Filshill, A.; Fu, P.; Hsuan, G.; Hu, T.; Soeder, D.; Shah, S.; Vidic, R.D.; Young, M.H.: Toward better hydraulic fracturing fluids and their application in energy production: a review of sustainable technologies and reduction of potential environmental impacts. J. Petrol. Sci. Eng. 173, 793–803 (2019). https://doi.org/10.1016/j.petrol.2018.09.056

    Article  Google Scholar 

  2. You, Q.; Wang, H.; Zhang, Y.; Liu, Y.; Fang, J.; Dai, C.: Experimental study on spontaneous imbibition of recycled fracturing flow-back fluid to enhance oil recovery in low permeability sandstone reservoirs. J. Petrol. Sci. Eng. 166, 375–380 (2018). https://doi.org/10.1016/j.petrol.2018.03.058

    Article  Google Scholar 

  3. Yilmaz, A.E.; Boncukcuoğlu, R.; Bayar, S.; Fil, B.A.; Kocakerim, M.M.: Boron removal by means of chemical precipitation with calcium hydroxide and calcium borate formation. Korean J. Chem. Eng. 29, 1382–1387 (2012). https://doi.org/10.1007/s11814-012-0040-1

    Article  Google Scholar 

  4. Zhang, Z.; Mao, J.; Zhang, Y.; Han, T.; Yang, B.; Xiao, W.: Improved fracturing fluid using: organic amino boron composite crosslinker with BN covalent bond. J of Applied Polymer Sci 136, 47675 (2019). https://doi.org/10.1002/app.47675

    Article  Google Scholar 

  5. Peng, X.; Shi, D.; Zhang, Y.; Zhang, L.; Ji, L.; Li, L.: Recovery of boron from unacidified salt lake brine by solvent extraction with 2,2,4-trimethyl-1,3-pentanediol. J. Mol. Liq. 326, 115301 (2021). https://doi.org/10.1016/j.molliq.2021.115301

    Article  Google Scholar 

  6. The 5th annual international conference on material engineering and application. In: IOP Conference Series: Materials and Science and Engineering, vol. 484. pp. 011001 (2019). https://doi.org/10.1088/1757-899X/484/1/011001.

  7. Kluczka, J.; Trojanowska, J.; Zolotajkin, M.; Ciba, J.; Turek, M.; Dydo, P.: Boron removal from wastewater using adsorbents. Environ. Technol. 28, 105–113 (2007). https://doi.org/10.1080/09593332808618769

    Article  Google Scholar 

  8. Yandri, Y.; Ropingi, H.; Suhartati, T.; Irawan, B.; Hadi, S.: Immobilization of Aspergillus fumigatus α-amylase via adsorption onto bentonite/chitosan for stability enhancement. Emerg Sci J 7, 811–1826 (2023). https://doi.org/10.28991/ESJ-2023-07-05-023

    Article  Google Scholar 

  9. Yandri, Y.; Tiarsa, E.R.; Suhartati, T.; Irawan, B.; Hadi, S.: Immobilization and stabilization of Aspergillus Fumigatus α-amylase by adsorption on a chitin. Emerg Sci J 7, 77–89 (2022). https://doi.org/10.28991/ESJ-2023-07-01-06

    Article  Google Scholar 

  10. Aneke, F.; Adu, J.: Adsorption of heavy metals from contaminated water using Leachate modular tower. Civ Eng J 9, 1522–1541 (2023). https://doi.org/10.28991/CEJ-2023-09-06-017

    Article  Google Scholar 

  11. Lin, J.-Y.; Mahasti, N.N.N.; Huang, Y.-H.: Recent advances in adsorption and coagulation for boron removal from wastewater: a comprehensive review. J. Hazard. Mater. 407, 124401 (2021). https://doi.org/10.1016/j.jhazmat.2020.124401

    Article  Google Scholar 

  12. Zelmanov, G.; Semiat, R.: Boron removal from water and its recovery using iron (Fe+3) oxide/hydroxide-based nanoparticles (NanoFe) and NanoFe-impregnated granular activated carbon as adsorbent. Desalination 333, 107–117 (2014). https://doi.org/10.1016/j.desal.2013.11.027

    Article  Google Scholar 

  13. Kluczka, J.; Korolewicz, T.; Zołotajkin, M.; Simka, W.; Raczek, M.: A new adsorbent for boron removal from aqueous solutions. Environ. Technol. 34, 1369–1376 (2013). https://doi.org/10.1080/09593330.2012.750380

    Article  Google Scholar 

  14. Myachina, M.A.; Polyakova, Yu.A.; Gavrilova, N.N.; Nazarov, V.V.; Kolesnikov, V.A.: ZrO2–Carbon nanotubes composite sorbent for treatment of aqueous solutions to remove boron. Russ. J. Appl. Chem. 90, 895–900 (2017). https://doi.org/10.1134/S107042721706009X

    Article  Google Scholar 

  15. Le, Y.; Guan, Y.; Ma, X.; Zhang, W.: Preparation and boron removal performance of glycidol modified PANI nanorods: an optimization study based on response surface methodology. Polymers 15, 459 (2023). https://doi.org/10.3390/polym15020459

    Article  Google Scholar 

  16. Dong, H.; Wang, S.; Niu, S.; Sha, X.; Ji, Z.; Wang, X.; Zhang, X.: Preparation and application of porous functional polymers for boron removal in seawater desalination by a mild and free-organic solvents process. Desalination 560, 116658 (2023). https://doi.org/10.1016/j.desal.2023.116658

    Article  Google Scholar 

  17. Sun, L.; Huang, J.; Liu, H.; Zhang, Y.; Ye, X.; Zhang, H.; Wu, A.; Wu, Z.: Adsorption of boron by CA@KH-550@EPH@NMDG (CKEN) with biomass carbonaceous aerogels as substrate. J. Hazard. Mater. 358, 10–19 (2018). https://doi.org/10.1016/j.jhazmat.2018.06.040

    Article  Google Scholar 

  18. Bartoli, M.; Giorcelli, M.; Jagdale, P.; Rosso, C.; Rovere, M.; Tagliaferro, A.: Unraveling the biochar potential as filler for composites preparation. Macromol. Symp. 408, 2200085 (2023). https://doi.org/10.1002/masy.202200085

    Article  Google Scholar 

  19. Sui, L.; Tang, C.; Du, Q.; Zhao, Y.; Cheng, K.; Yang, F.: Preparation and characterization of boron-doped corn straw biochar: Fe(II) removal equilibrium and kinetics. J. Environ. Sci. 106, 116–123 (2021). https://doi.org/10.1016/j.jes.2021.01.001

    Article  Google Scholar 

  20. Jiang, C.; Bo, J.; Xiao, X.; Zhang, S.; Wang, Z.; Yan, G.; Wu, Y.; Wong, C.; He, H.: Converting waste lignin into nano-biochar as a renewable substitute of carbon black for reinforcing styrene-butadiene rubber. Waste Manage. 102, 732–742 (2020). https://doi.org/10.1016/j.wasman.2019.11.019

    Article  Google Scholar 

  21. Xue, B.; Wang, X.; Sui, J.; Xu, D.; Zhu, Y.; Liu, X.: A facile ball milling method to produce sustainable pyrolytic rice husk bio-filler for reinforcement of rubber mechanical property. Ind. Crops Prod. 141, 111791 (2019). https://doi.org/10.1016/j.indcrop.2019.111791

    Article  Google Scholar 

  22. Lin, M.; Li, F.; Li, X.; Rong, X.; Oh, K.: Biochar-clay, biochar-microorganism and biochar-enzyme composites for environmental remediation: a review. Environ. Chem. Lett. 21, 1837–1862 (2023). https://doi.org/10.1007/s10311-023-01582-6

    Article  Google Scholar 

  23. Singh, H.; Northup, B.K.; Rice, C.W.; Prasad, P.V.V.: Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar 4, 8 (2022). https://doi.org/10.1007/s42773-022-00138-1

    Article  Google Scholar 

  24. Rodríguez-Narciso, S.; Lozano-Álvarez, J.A.; Salinas-Gutiérrez, R.; Castañeda-Leyva, N.: A Stochastic model for adsorption kinetics. Adsorpt. Sci. Technol. 2021, 5522581 (2021). https://doi.org/10.1155/2021/5522581

    Article  Google Scholar 

  25. Xu, C.; Yuan, R.; Wang, X.: Selective reduction of graphene oxide. New Carbon Mater. 29, 61–66 (2014). https://doi.org/10.1016/S1872-5805(14)60126-8

    Article  Google Scholar 

  26. Chen, F.; Guo, L.; Zhang, X.; Yi Leong, Z.; Yang, S.; Ying Yang, H.: Nitrogen-doped graphene oxide for effectively removing boron ions from seawater. Nanoscale 9, 326–333 (2017). https://doi.org/10.1039/C6NR07448K

    Article  Google Scholar 

  27. Al-Afy, N.; Sereshti, H.: Rapid removal of boron from environmental water samples using magnetic graphene oxide: optimized by central composite design. DWT 153, 65–75 (2019). https://doi.org/10.5004/dwt.2019.23948

    Article  Google Scholar 

  28. Amrutha, G.; Jeppu, C.R.; Girish, B.; Prabhu, K.: Mayer, multi-component adsorption isotherms: review and modeling studies. Environ. Process. 10, 38 (2023). https://doi.org/10.1007/s40710-023-00631-0

    Article  Google Scholar 

  29. Yuan, R.; Si, T.; Lu, Q.; Bian, R.; Wang, Y.; Liu, X.; Zhang, X.; Zheng, J.; Cheng, K.; Joseph, S.; Li, L.; Pan, G.: Rape straw biochar enhanced Cd immobilization in flooded paddy soil by promoting Fe and sulfur transformation. Chemosphere 339, 139652 (2023). https://doi.org/10.1016/j.chemosphere.2023.139652

    Article  Google Scholar 

  30. Zhu, X.; Shen, J.; Kang, J.; Yan, P.; Yuan, L.; Cheng, Y.; Wang, B.; Zhao, S.; Chen, Z.: Surface atomic oxygen species mediated the in-situ formation of hydroxyl radicals on Fe3C decorated biochar for enhancing catalytic ozonation. Chem. Eng. J. 473, 145380 (2023). https://doi.org/10.1016/j.cej.2023.145380

    Article  Google Scholar 

  31. Palansooriya, K.N.; Yoon, I.-H.; Kim, S.-M.; Wang, C.-H.; Kwon, H.; Lee, S.-H.; Igalavithana, A.D.; Mukhopadhyay, R.; Sarkar, B.; Ok, Y.S.: Designer biochar with enhanced functionality for efficient removal of radioactive cesium and strontium from water. Environ. Res. 214, 114072 (2022). https://doi.org/10.1016/j.envres.2022.114072

    Article  Google Scholar 

  32. Li, B.; Yang, L.; Wang, C.; Zhang, Q.; Liu, Q.; Li, Y.; Xiao, R.: Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 175, 332–340 (2017). https://doi.org/10.1016/j.chemosphere.2017.02.061

    Article  Google Scholar 

  33. Bicak, N.; Gazi, M.; Senkal, B.F.: Polymer supported amino bis-(cis-propan 2,3 diol) functions for removal of trace boron from water. React. Funct. Polym. 65, 143–148 (2005). https://doi.org/10.1016/j.reactfunctpolym.2005.01.010

    Article  Google Scholar 

  34. Wu, Q.; Liu, M.; Wang, X.: A novel chitosan based adsorbent for boron separation. Sep. Purif. Technol. 211, 162–169 (2019). https://doi.org/10.1016/j.seppur.2018.09.070

    Article  Google Scholar 

  35. Xu, L.; Liu, Y.; Hu, H.; Wu, Z.; Chen, Q.: Synthesis, characterization and application of a novel silica based adsorbent for boron removal. Desalination 294, 1–7 (2012). https://doi.org/10.1016/j.desal.2012.02.030

    Article  Google Scholar 

  36. Harada, A.; Takagi, T.; Kataoka, S.; Yamamoto, T.; Endo, A.: Boron adsorption mechanism on polyvinyl alcohol. Adsorption 17, 171–178 (2011). https://doi.org/10.1007/s10450-010-9300-8

    Article  Google Scholar 

  37. Gazi, M.; Galli, G.; Bicak, N.: The rapid boron uptake by multi-hydroxyl functional hairy polymers. Sep. Purif. Technol. 62, 484–488 (2008). https://doi.org/10.1016/j.seppur.2008.02.004

    Article  Google Scholar 

  38. Morisada, S.; Rin, T.; Ogata, T.; Kim, Y.-H.; Nakano, Y.: Adsorption removal of boron in aqueous solutions by amine-modified tannin gel. Water Res. 45, 4028–4034 (2011). https://doi.org/10.1016/j.watres.2011.05.010

    Article  Google Scholar 

  39. Gao, Z.; Xie, S.; Zhang, B.; Qiu, X.; Chen, F.: Ultrathin Mg–Al layered double hydroxide prepared by ionothermal synthesis in a deep eutectic solvent for highly effective boron removal. Chem. Eng. J. 319, 108–118 (2017). https://doi.org/10.1016/j.cej.2017.03.002

    Article  Google Scholar 

  40. Demirçivi, P.; Saygılı, G.N.: Comparative study of modified expanded perlite with hexadecyltrimethylammonium-bromide and gallic acid for boron adsorption. J. Mol. Liq. 254, 383–390 (2018). https://doi.org/10.1016/j.molliq.2018.01.116

    Article  Google Scholar 

  41. Liao, X.; Wang, B.; Zhang, Q.: Synthesis of glycopolymer nanosponges with enhanced adsorption performances for boron removal and water treatment. J. Mater. Chem. A 6, 21193–21206 (2018). https://doi.org/10.1039/C8TA06802J

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Opening Project of Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province (YQKF202108) awarded to ML, and the University Students Innovation and Entrepreneurship Training Program (202210615040) awarded to XW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Luo.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Luo, M., Wang, T. et al. Preparation of Biochar Composite Graphene Oxide for the Removal of Boron in Simulated Fracturing Flowback Fluid. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09126-y

Keywords

Navigation