Skip to main content
Log in

PID-like IT2FLC-Based Autonomous Vehicle Control in Urban Areas

  • Research Article-Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Reliable autonomous navigation requires a seamless framework that blends perception, localization, planning, and control. Therefore, this research sought to optimize the accuracy of the steering angle, braking, and throttle control as well as the precise localization of self-driving cars within the complicated urban environment. To provide reliable AV control, cutting-edge technology was used: a proportional–integral–derivative-like interval type 2 fuzzy logic controller (PID-like IT2FLC). This advanced controller improved the AV motion control stability, precision, and efficiency. Multiple technologies worked simultaneously to build perception, path planning, and localization. A minimal convolutional neural network (CNN) trained on red–green–blue (RGB) images precisely localized the vehicle’s position. The A* algorithm, essential for AV path-planning software, determined the optimal trajectories to navigate complex urban areas by avoiding obstructions and obeying traffic laws. Control performance improved by reducing errors using the sophisticated Car Learning to Act (CARLA) simulator for validation. You Only Look Once version 3 (YOLOv3) was 98.87% accurate for object perception in empirical tests. The simulation results confirmed the effectiveness of the suggested approach with mean squared error (MSE) values of 0.039, 0.0099, and 0.0047 to predict the position (x, y) and the orientation, respectively, based on the CNN. With an MSE of 0.0244 and 0.077 for the steering angle and speed, respectively, the simulation results showed that the suggested technique performed well under various weather conditions and when compared to prior research. Specifically, there was a 15.28% enhancement in the MSE for the steering angle and an impressive 88.15% enhancement for speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

AV(s):

Autonomous vehicle(s)

AD:

Autonomous driving

A*:

A- “star”

CARLA:

Car learning to act

CNN:

Convolutional neural network

COCO:

Common objects in context

DL:

Deep learning

FOU:

Footprint of uncertainty

GNSS:

Global navigation satellite system

GPS:

Global Positioning System

IMU:

Inertial measurement unit

IT2FLC:

Interval type 2 fuzzy logic controller

KM:

Karnik–Mendel

LiDAR:

Light detection and ranging

LMF:

Lower membership function

LSTM:

Long short-term memory

Map:

Mean average precision

MPCs:

Model predictive controllers

MSE:

Mean squared error

PD:

Proportional–derivative

PI:

Proportional–integral

PID-like IT2FLC:

Proportional–integral–derivative-like interval type 2 fuzzy logic controller

RADAR:

Radio detection and ranging

RGB:

Red–green–blue

RL:

Reinforcement learning

RNN:

Recurrent neural networks

SLAM:

Simultaneous localization and mapping

UMF:

Upper membership function

YOLO:

You only look once

YOLOv3:

You only look once version 3

References

  1. Gidado, U.M.; Chiroma, H.; Aljojo, N.; Abubakar, S.; Popoola, S.I.; Al-Garadi, M.A.: A survey on deep learning for steering angle prediction in autonomous vehicles. IEEE Access 8, 163797–163817 (2020). https://doi.org/10.1109/ACCESS.2020.3017883

    Article  Google Scholar 

  2. Wang, H.; Chen, X.; Miao, Z.: Target points tracking control for autonomous cleaning vehicle based on the LSTM network. Appl. Sci. (2019). https://doi.org/10.3390/app9183806

    Article  Google Scholar 

  3. Takleh, T.T.O.; Bakar, N.A.; Rahman, S.A.; Hamzah, R.; Aziz, Z.A.: A brief survey on SLAM methods in autonomous vehicle. Int. J. Eng. Technol. 7(4), 38–43 (2018). https://doi.org/10.14419/ijet.v7i4.27.22477

    Article  Google Scholar 

  4. Chen, S.; Chen, H.: MPC-based path tracking with PID speed control for autonomous vehicles. IOP Conf. Ser. Mater. Sci. Eng. (2020). https://doi.org/10.1088/1757-899X/892/1/012034

    Article  Google Scholar 

  5. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V.: CARLA: An open urban driving simulator. No. CoRL, pp. 1–16, http://arxiv.org/abs/1711.03938 (2017)

  6. Jhung, J.; Bae, I.; Moon, J.; Kim, T.; Kim, J.; Kim, S.: End-to-end steering controller with CNN-based closed-loop feedback for autonomous vehicles. (2018)

  7. Wang, D.; Wen, J.; Wang, Y.; Huang, X.; Pei, F.: End-to-end self-driving using deep neural networks with multi-auxiliary tasks. Autom. Innov. 2(2), 127–136 (2019). https://doi.org/10.1007/s42154-019-00057-1

    Article  Google Scholar 

  8. Toromanoff, M.; Wirbel, E.; Moutarde, F.: End-to-end model-free reinforcement learning for urban driving using implicit affordances. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. https://doi.org/10.1109/CVPR42600.2020.00718 (2020)

  9. Chen, I.M.; Chan, C.Y.: Deep reinforcement learning based path tracking controller for autonomous vehicle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 235(2–3), 541–551 (2021). https://doi.org/10.1177/0954407020954591

    Article  Google Scholar 

  10. El Mahdawy, A.; El Mougy, A.: Path planning for autonomous vehicles with dynamic lane mapping and obstacle avoidance. ICAART 2021 Proc. 13th Int. Conf. Agents Artif. Intell. 1, 431–438 (2021). https://doi.org/10.5220/0010342704310438

    Article  Google Scholar 

  11. Huang, Z.; Wu, J.; Lv, C.: Efficient deep reinforcement learning with imitative expert priors for autonomous driving (2021)

  12. Liu, Y.; Yixuan, Y.; Liu, M.: Ground-aware monocular 3D object detection for autonomous driving. IEEE Robot. Autom. Lett. 6(2), 919–926 (2021). https://doi.org/10.1109/LRA.2021.3052442

    Article  Google Scholar 

  13. Ennajar, A.; Khouja, N.; Boutteau, R.; Tlili, F.: Deep multi-modal object detection for autonomous driving. In: 18th IEEE international multi-conference system signals devices, SSD, pp. 7–11, https://doi.org/10.1109/SSD52085.2021.9429355 (2021)

  14. Ballardini, A.L.; Fontana, S.; Cattaneo, D.; Sorrenti, D.G.: Vehicle localization using 3D building models and point cloud matching. pp. 1–19 (2021)

  15. Li, Y.; Cai, Y.; Malekian, R.; Wang, H.; Sotelo, M.A.; Li, Z.: Creating navigation map in semi-open scenarios for intelligent vehicle localization using multi-sensor fusion. Expert Syst. Appl. 184, 115543 (2021). https://doi.org/10.1016/j.eswa.2021.115543

    Article  Google Scholar 

  16. Liu, J.; Guo, G.: Vehicle localization during GPS outages with extended Kalman filter and deep learning. IEEE Trans. Instrum. Meas. (2021). https://doi.org/10.1109/TIM.2021.3097401

    Article  Google Scholar 

  17. Guo, C.; Lin, M.; Guo, H.; Liang, P.; Cheng, E.: Coarse-to-fine semantic localization with HD map for autonomous driving in structural scenes. IEEE Int. Conf. Intell. Robot. Syst. (2021). https://doi.org/10.1109/IROS51168.2021.9635923

    Article  Google Scholar 

  18. Cai, P.; Sun, Y.; Wang, H.; Liu, M.: VTGNet: a vision-based trajectory generation network for autonomous vehicles in urban environments. IEEE Trans. Intell. Veh. 8858, 1–11 (2020). https://doi.org/10.1109/TIV.2020.3033878

    Article  Google Scholar 

  19. John, V.; Mita, S.: Deep feature-level sensor fusion using skip connections for real-time object detection in autonomous driving. Electron. 10(4), 1–12 (2021). https://doi.org/10.3390/electronics10040424

    Article  Google Scholar 

  20. Sharma, T.; Debaque, B.; Duclos, N.; Chehri, A.; Kinder, B.; Fortier, P.: Deep learning-based object detection and scene perception under bad weather conditions. Electron. 11(4), 1–11 (2022). https://doi.org/10.3390/electronics11040563

    Article  Google Scholar 

  21. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K.: A survey of autonomous driving: common practices and emerging technologies. IEEE Access 8, 58443–58469 (2020). https://doi.org/10.1109/ACCESS.2020.2983149

    Article  Google Scholar 

  22. Ghintab, S.; Hassan, M.: CNN-based visual localization for autonomous vehicles under different weather conditions. Eng. Technol. J. 41(2), 1–12 (2022). https://doi.org/10.30684/etj.2022.135917.1289

    Article  Google Scholar 

  23. Russell, P.; Stuart, J.; Norvig, P.: Artificial intelligence: a modern approach. (2016)

  24. Samak, C.; Samak, T.; Kandhasamy, S.: Control strategies for autonomous vehicles. CRC Press: New York, pp. 37–85, https://doi.org/10.1201/9781003048381-3 (2021)

  25. Tiwari, T.; Agarwal, S.; Etar, A.: Controller design for autonomous vehicle. In: Proceedings of 2021 1st International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies ICAECT, https://doi.org/10.1109/ICAECT49130.2021.9392498 (2021)

  26. Vision, L.C.; Vision, L.C.; Jaeger, B.: Expert drivers for autonomous driving (2021)

  27. Raheem, R.S.; Hassan, M.Y.; Kadhim, S.K.: Particle swarm optimization based interval type 2 fuzzy logic control for motor rotor position control of artificial heart pump. Indones. J. Electr. Eng. Comput. Sci. 25(2), 814–824 (2022). https://doi.org/10.11591/ijeecs.v25.i2.pp814-824

    Article  Google Scholar 

  28. Hassan, M.Y.: Intelligent tracking control using PSO—based interval type—2 fuzzy logic for a MIMO maneuvering system. Al-Qadisiyah J. Eng. Sci. 11(1), 22–39 (2018). https://doi.org/10.30772/qjes.v11i1.518

    Article  Google Scholar 

  29. Sabeeh, S.; Karam, Z.A.; Hasan, S.: Artificially-intelligent robotic space manipulator using fuzzily-architected nonlinear controllers. Int. J. Adv. Technol. Eng. Explor. (2022). https://doi.org/10.19101/ijatee.2021.875148

    Article  Google Scholar 

  30. Hassan, M.Y.; Kothapalli, G.: Interval Type-2 fuzzy position control of electro-hydraulic actuated robotic excavator. Int. J. Min. Sci. Technol. 22(3), 437–445 (2012). https://doi.org/10.1016/j.ijmst.2011.12.004

    Article  Google Scholar 

  31. Mao et al. J.: One million scenes for autonomous driving: once dataset,” no. NeurIPS, pp. 1–21, http://arxiv.org/abs/2106.11037 (2021)

  32. Raheem, F.A.; Abdulkareem, M.I.: Development of A* algorithm for robot path planning based on modified probabilistic roadmap and artificial potential field. J. Eng. Sci. Technol. 15(5), 3034–3054 (2020)

    Google Scholar 

  33. Liu, H.; Huang, Z.; Lv, C.: Improved deep reinforcement learning with expert demonstrations for urban autonomous driving. http://arxiv.org/abs/2102.09243 (2021)

  34. Pérez-Gil, Ó., et al.: Deep reinforcement learning based control for autonomous vehicles in CARLA. Multimed. Tools Appl. 81(3), 3553–3576 (2022). https://doi.org/10.1007/s11042-021-11437-3

    Article  Google Scholar 

  35. https://universe.roboflow.com/vehicle-mscoco/vehicles-coco (2022)

  36. Jin Kim, C.; Jae Lee, M.; Hong Hwang, K.; Guk Ha, Y.: End-to-end deep learning-based autonomous driving control for high-speed environment. J. Supercomput. 78(2), 1961–1982 (2022). https://doi.org/10.1007/s11227-021-03929-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahad S. Ghintab.

Ethics declarations

Conflict of Interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or nonfinancial interest in the subject matter or materials discussed in this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghintab, S.S., Hassan, M.Y. PID-like IT2FLC-Based Autonomous Vehicle Control in Urban Areas. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09104-4

Keywords

Navigation