Skip to main content
Log in

Strength and Elastic Properties of Air–Cement-Treated Clays Under Cyclic and Monotonic Compression Tests

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Using air–cement-treated clay (ACTC) as a subgrade material for flexible pavements has gained widespread interest and acceptance. The mechanical properties of ACTC, including its compressive strength and elastic modulus (i.e., equivalent elastic modulus, \(E_{{{\text{eq}}}}\)) are required to realistically model its behavior in simulating pavement structure. This paper investigates the impact of different mixing proportions, particularly cement content and unit weight, on the mechanical properties of ACTC. These properties include its unconfined compressive strength (\(q_{{\text{u}}}\)) and elastic moduli (initial modulus (\(E_{{0}}\)), secant modulus (\(E_{{{50}}}\)), and \(E_{{{\text{eq}}}}\)). The aim of the current study is to develop an equation for estimating the \(E_{{{\text{eq}}}}\), which is essential for analyzing pavement structures under cyclic loading. The study involves applying continuous monotonic and cyclic loads to evaluate the mechanical properties of ACTC mixtures with varying cement contents (35–135%) and controlled unit weights (8, 10, and 12 kN/m3). Our study findings indicate that both \(q_{{\text{u}}}\) and the elastic moduli are significantly influenced by cement content and unit weight, and are well described using the effective void ratio (\(e_{{{\text{st}}}}\)) parameter. The ranges for \(q_{{\text{u}}}\), \(E_{{0}}\), and \(E_{{{50}}}\) were 51.9–411.2 kPa, 42.8–289.4 MPa, and 33.9–183.1 MPa, respectively. \(E_{{{\text{eq}}}}\) varied between 37.6 and 289.4 MPa, depending upon the cement content, unit weight, and applied stress level. Notably, \(E_{{{\text{eq}}}}\) values decreased with increasing vertical stress. A simplified equation, accounting for the combined effects of cement content and unit weight on the \(E_{{{\text{eq}}}}\) variation under different stress levels, is developed and recommended for practical use in designing ACTC mixtures for pavement analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chai, J.C.; Shrestha, S.; Hino, T.; Ding, W.Q.; Kamo, Y.; Carter, J.P.: 2D and 3D analyses of an embankment on clay improved by soil–cement columns. Comput. Geotech. 68, 28–37 (2015). https://doi.org/10.1016/j.compgeo.2015.03.014

    Article  Google Scholar 

  2. Phutthananon, C.; Jongpradist, P.; Kandavorawong, K.; Dias, D.; Guo, X.; Jamsawang, P.: Reliability assessment for serviceability limit states of stiffened deep cement mixing column-supported embankments. J. Rock Mech. Geotech. Eng. 15, 2402–2422 (2023). https://doi.org/10.1016/j.jrmge.2023.05.008

    Article  Google Scholar 

  3. Phutthananon, C.; Jongpradist, P.; Wonglert, A.; Kandavorawong, K.; Sanboonsiri, S.; Jamsawang, P.: Field and 3D numerical investigations of the performances of stiffened deep cement mixing column-supported embankments built on soft soil. Arab. J. Sci. Eng. 48, 5139–5169 (2023). https://doi.org/10.1007/s13369-022-07322-2

    Article  Google Scholar 

  4. Jongpradist, P.; Youwai, S.; Jaturapitakkul, C.: Effective void ratio for assessing the mechanical properties of cement-clay admixtures at high water content. J. Geotech. Geoenviron. Eng. 137, 621–627 (2011). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000462

    Article  Google Scholar 

  5. Eskisar, T.: Influence of cement treatment on unconfined compressive strength and compressibility of lean clay with medium plasticity. Arab. J. Sci. Eng. 40, 763–772 (2015). https://doi.org/10.1007/s13369-015-1579-z

    Article  Google Scholar 

  6. Suksiripattanapong, C.; Tesanasin, T.; Tiyasangthong, S.; Tabyang, W.; Sukontasukkul, P.; Chindaprasirt, P.: Use of cement and bottom ash in deep mixing application for stabilization of soft Bangkok clay. Arab. J. Sci. Eng. 48, 4583–4593 (2023). https://doi.org/10.1007/s13369-022-07102-y

    Article  Google Scholar 

  7. Yuan, X.; Lu, Z.; Yao, H.; Tan, X.; Zhao, Y.; Tang, C.; Cheng, M.; Gao, Y.: Engineering properties and applications of air-foamed lightweight soil. Adv. Mater. Sci. Eng. 2022, 4967037 (2022). https://doi.org/10.1155/2022/4967037

    Article  Google Scholar 

  8. Kim, T.H.; Kim, T.H.; Kang, G.C.: Performance evaluation of road embankment constructed using lightweight soils on an unimproved soft soil layer. Eng. Geol. 160, 34–43 (2013). https://doi.org/10.1016/j.enggeo.2013.03.024

    Article  Google Scholar 

  9. Satoh, T.; Tsuchida, T.; Mitsukuri, K.; Hong, Z.: Field placing test of lightweight treated soil under sea water in Kumamoto port. Soils Found. 41, 145–154 (2001). https://doi.org/10.3208/sandf.41.5_145

    Article  Google Scholar 

  10. Chaiyaput, S.; Ayawanna, J.; Jongpradist, P.; Poorahong, H.; Sukkarak, R.; Jamsawang, P.: Application of a cement–clay–air foam mixture as a lightweight embankment material for construction on soft clay. Case Stud. Constr. Mater. 18, e02188 (2023). https://doi.org/10.1016/j.cscm.2023.e02188

    Article  Google Scholar 

  11. Saride, S.; Puppala, A.J.; Williammee, R.; Sirigiripet, S.K.: Use of lightweight ECS as a fill material to control approach embankment settlements. J. Mater. Civ. Eng. 22, 607–617 (2010). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000060

    Article  Google Scholar 

  12. Tsuchida, T.; Porbaha, A.; Yamane, N.: Development of a geomaterial from dredged bay mud. J. Mater. Civ. Eng. 13, 152–160 (2001). https://doi.org/10.1061/(ASCE)0899-1561(2001)13:2(152)

    Article  Google Scholar 

  13. Hayashi, Y.; Suzuki, A.; Matsuo, A.: Mechanical properties of air-cement-treated soils. Gr. Improv. 6, 69–78 (2002). https://doi.org/10.1680/grim.6.2.69.40792

    Article  Google Scholar 

  14. Yoon, G.L.; You, S.K.: Strength and deformation characteristics of lightweight foamed soil using in-situ soil. J. Korean Geotech. Soc. 20, 125–131 (2004)

    Google Scholar 

  15. Horpibulsuk, S.; Suddeepong, A.; Chinkulkijniwat, A.; Liu, M.D.: Strength and compressibility of lightweight cemented clays. Appl. Clay Sci. 69, 11–21 (2012). https://doi.org/10.1016/j.clay.2012.08.006

    Article  Google Scholar 

  16. Vo, H.V.; Park, D.W.: Lightweight treated soil as a potential sustainable pavement material. J. Perform. Constr. Facil. 30, C4014009 (2016). https://doi.org/10.1061/(ASCE)CF.1943-5509.0000720

    Article  Google Scholar 

  17. Do, J.; Kim, S.; Han, T.; Yoon, G.: Behavior of lightweight-foamed soil reinforced by waste fishing net and its design guideline. Mar. Georesources Geotechnol. (2023). https://doi.org/10.1080/1064119X.2023.2195859

    Article  Google Scholar 

  18. Zhang, H.; Liu, M.; Yu, J.; Sun, Y.; Zhou, P.; Song, J.; Song, X.: Mechanical and physical properties of silt-based foamed concrete with different silt types. Arab. J. Sci. Eng. 47, 12803–12815 (2022). https://doi.org/10.1007/s13369-021-06551-1

    Article  Google Scholar 

  19. Wu, Y.; Zeng, C.; Liu, J.; Diao, H.: Measured settlement of highways improved by lightweight backfilling without road closure. Arab. J. Sci. Eng. 41, 3889–3896 (2016). https://doi.org/10.1007/s13369-015-2017-y

    Article  Google Scholar 

  20. Dararat, S.; Kongkitkul, W.; Posribink, T.; Jongpradist, P.: Comparison of the lifetime predicted by elastic analyses between two pavement structure candidates considering truck overloading. Road Mater. Pavement Des. 23, 1129–1156 (2022). https://doi.org/10.1080/14680629.2021.1883463

    Article  Google Scholar 

  21. HGS Research Consortium: High grade soil (HGS)-foam mixed stabilized soil method. Public Work Research Institute (PWRI), Japan (2005)

    Google Scholar 

  22. Kim, T.H.; Kang, G.C.; Park, L.K.: Development and mechanical strength properties of a new lightweight soil. Environ. Earth Sci. 72, 1109–1116 (2014). https://doi.org/10.1007/s12665-013-3027-2

    Article  Google Scholar 

  23. Wu, J.; Lv, C.; Pi, R.; Zhang, H.; Bi, Y.; Song, X.; Wang, Z.: The stability and durability of silt-based foamed concrete: a new type of road engineering material. Constr. Build. Mater. 304, 124674 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124674

    Article  Google Scholar 

  24. Phutthananon, C.; Jongpradist, P.; Nakin, S.; Youwai, S.; Hajiazizi, M.; Jamsawang, P.: State parameter governing the mechanical properties of cement-treated clays. Mar. Georesources Geotechnol. 41, 388–399 (2023). https://doi.org/10.1080/1064119X.2022.2049935

    Article  Google Scholar 

  25. Phutthananon, C.; Tippracha, N.; Jongpradist, P.; Tunsakul, J.; Tangchirapat, W.; Jamsawang, P.: Investigation of strength and microstructural characteristics of blended cement-admixed clay with bottom ash. Sustainability 15, 3795 (2023). https://doi.org/10.3390/su15043795

    Article  Google Scholar 

  26. Goto, S.; Tatsuoka, F.; Shibuya, S.; Kim, Y.S.; Sato, T.: Simple gauge for local small strain measurements in the laboratory. Soils Found. 31, 169–180 (1991). https://doi.org/10.3208/sandf1972.31.169

    Article  Google Scholar 

  27. Kongkitkul, W.; Musika, N.; Tongnuapad, C.; Jongpradist, P.; Youwai, S.: Anisotropy in compressive strength and elastic stiffness of normal and polymer-modified asphalts. Soils Found. 54, 94–108 (2014). https://doi.org/10.1016/j.sandf.2014.02.002

    Article  Google Scholar 

  28. Abdelrahman, G.E.; Kawabe, S.; Tsukamoto, Y.; Tatsuoka, F.: Small-strain stress–strain properties of expanded polystyrene geofoam. Soils Found. 48, 61–71 (2008). https://doi.org/10.3208/sandf.48.61

    Article  Google Scholar 

  29. Lorenzo, G.A.; Bergado, D.T.: Fundamental parameters of cement-admixed clay—New approach. J. Geotech. Geoenviron. Eng. 130, 1042–1050 (2004). https://doi.org/10.1061/(ASCE)1090-0241(2004)130

    Article  Google Scholar 

  30. Jongpradist, P.; Jamsawang, P.; Kongkitkul, W.: Equivalent void ratio controlling the mechanical properties of cementitious material-clay mixtures with high water content. Mar. Georesources Geotechnol. 37, 1151–1162 (2019). https://doi.org/10.1080/1064119X.2018.1539534

    Article  Google Scholar 

  31. Sittibun, T.: Strength and one-dimensional deformation characteristics of air-cement treated soil, M.Eng. Thesis, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand (2007)

  32. Kim, Y.T.; Kim, H.J.; Lee, G.H.: Mechanical behavior of lightweight soil reinforced with waste fishing net. Geotext. Geomembr. 26, 512–518 (2008). https://doi.org/10.1016/j.geotexmem.2008.05.004

    Article  Google Scholar 

  33. Zhang, R.J.; Zheng, J.J.; Bian, X.Y.: Experimental investigation on effect of curing stress on the strength of cement-stabilized clay at high water content. Acta Geotech. 12, 921–936 (2017). https://doi.org/10.1007/s11440-016-0511-3

    Article  Google Scholar 

  34. Sukkarak, R.; Thangjaroensuk, B.; Kongkitkul, W.; Jongpradist, P.: Strength and equivalent modulus of cement stabilized lateritic with partial replacement by fly ash and rice husk ash. Eng. J. 25, 13–25 (2021). https://doi.org/10.4186/ej.2021.25.10.13

    Article  Google Scholar 

  35. Hoque, E.; Tatsuoka, F.: Anisotropy in elastic deformation of granular materials. Soils Found. 38, 163–179 (1998). https://doi.org/10.3208/sandf.38.163

    Article  Google Scholar 

  36. Jamsawang, P.; Poorahong, H.; Jongpradist, P.; Likitlersuang, S.; Chaiyaput, S.: Destructive and nondestructive characteristics of solidified reservoir sediments incorporating microstructural analyses. Bull. Eng. Geol. Environ. 81, 338 (2022). https://doi.org/10.1007/s10064-022-02797-7

    Article  Google Scholar 

  37. Malai, A.; Youwai, S.: Stiffness of expanded polystyrene foam for different stress states. Int. J. Geosynth. Gr. Eng. 7, 80 (2021). https://doi.org/10.1007/s40891-021-00321-7

    Article  Google Scholar 

  38. Gibson, L.J.; Ashby, M.F.: The mechanics of two-dimensional cellular materials. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 382, 43–59 (1982). https://doi.org/10.1098/rspa.1982.0088

    Article  Google Scholar 

  39. Ossa, A.; Romo, M.P.: Micro- and macro-mechanical study of compressive behavior of expanded polystyrene geofoam. Geosynth. Int. 16, 327–338 (2009). https://doi.org/10.1680/gein.2009.16.5.327

    Article  Google Scholar 

  40. Moaf, F.O.; Kazemi, F.; Abdelgader, H.S.; Kurpińska, M.: Machine learning-based prediction of preplaced aggregate concrete characteristics. Eng. Appl. Artif. Intell. 123, 106387 (2023). https://doi.org/10.1016/j.engappai.2023.106387

    Article  Google Scholar 

  41. Shafighfard, T.; Kazemi, F.; Bagherzadeh, F.; Mieloszyk, M.; Yoo, D.Y.: Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams. Comput. Civ. Infrastruct. Eng. (2024). https://doi.org/10.1111/mice.13164

    Article  Google Scholar 

  42. Kazemi, F.; Shafighfard, T.; Yoo, D.Y.: Data-driven modeling of mechanical properties of fiber-reinforced concrete: a critical review. Arch. Comput. Methods Eng. (2024). https://doi.org/10.1007/s11831-023-10043-w

    Article  MathSciNet  Google Scholar 

  43. Phutthananon, C.; Ratanakijkul, P.; Youwai, S.; Kongkitkul, W.; Jongpradist, P.: Modeling the mechanical response of cement-admixed clay under different stress paths using recurrent neural networks. Int. J. Geosynth. Gr. Eng. 10, 16 (2024). https://doi.org/10.1007/s40891-024-00533-7

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by King Mongkut’s University of Technology Thonburi through the Research Strengthening Project of the Faculty of Engineering. The support by the National Science, Research and Innovation Fund (NSRF), and King Mongkut’s University of Technology North Bangkok, Contract No. KMUTNB-FF-66-27 was also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornkasem Jongpradist.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests that could have affected the research question of the study, its experimental design, data capture, and analysis or its final conclusions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phutthananon, C., Songprom, A., Sukkarak, R. et al. Strength and Elastic Properties of Air–Cement-Treated Clays Under Cyclic and Monotonic Compression Tests. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09096-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09096-1

Keywords

Navigation